Advertisements
Advertisements
प्रश्न
यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है
विकल्प
`a/2`
`"a"/2 int_0^"a" "f"(x)"d"x`
`int_0^"a" "f"(x)"d"x`
`"a" int_0^"a" "f"(x)"d"x`
उत्तर
सही उत्तर `underline("a"/2 int_0^"a" "f"(x)"d"x)` है।
व्याख्या:
क्योंकि I = `int_0^"a" "f"(x) * "g"(x)"d"x`
= `int_0^"a" "f"("a" - x) "g"("a" - x)"d"x`
= `int_0^"a" "f"(x)("a" - "g"(x))"d"x`
= `"a" int_0^"a" "f"(x) "d"x - int_0^"a" "f"(x) * "g"(x)"d"x`
= `"a" int_0^"a" "f"(x)"d"x - 1`
या 1 = `"a"/2 int_0^"a" "f"(x)"d"x`
APPEARS IN
संबंधित प्रश्न
दर्शाइए कि `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_-1^2 f (x) "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1|
`int ("d"x)/(sin^2 x cos^2 x)` बराबर है
यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है
`int_(-2)^2 |x cos pix| "d"x` बराबर है
निम्नलिखित का सत्यापन कीजिए-
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int sqrt(1 + x^2)/x^4 "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(2"a"x - x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 "e"^x "d"x`
निम्नलिखित का मान निकालिए-
`int_0^x xsin x cos^2 x"d"x`
निम्नलिखित का मान निकालिए-
`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))` (संकेत: x sinθ रखिए)
निम्नलिखित का मान निकालिए-
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2)) `
निम्नलिखित का मान निकालिए-
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
निम्नलिखित का मान निकालिए-
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
निम्नलिखित का मान निकालिए-
`int_0^1 x log(1 + 2x) "d"x`
`int (x^9 "d"x)/(4x^2 + 1)^6` बराबर है
`int x^3/(x + 1)` बराबर है
यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
`int sinx/(3 + 4cos^2x) "d"x` = ______.