Advertisements
Advertisements
Question
निम्नलिखित का मान निकालिए-
`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))` (संकेत: x sinθ रखिए)
Solution
मान लीजिए I = `int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`
x = sin θ रखो
∴ dx = cos θ dθ
सीमाओं को बदलने पर, हम प्राप्त करते हैं
जब x = 0
∴ sin θ = θ
∴ θ = 0
जब x = `1/2`
∴ sin θ = `1/2`
∴ θ = `pi/6`
∴ I = `int_0^(pi/6) (cos theta "d"theta)/((1 + sin^2theta)sqrt(1 - sin^2theta))`
= `int_0^(pi/6) (cos theta "d"theta)/((1 + sin^2theta) costheta)`
= `int_0^(pi/6) 1/(1 + sin^2theta) "d"theta`
अब, अंश और हर को cos2θ से विभाजित करने पर, हम प्राप्त करते हैं
= `int_0^(pi/6) (1/cos^2theta)/(1/(cos^2theta) + (sin^2theta)/(cos^2theta)) "d"theta`
= `int_0^(pi/6) (sec^2theta)/(sec^2theta + tan^2theta) "d"theta`
= `int_0^(pi/6) (sec^2theta)/(1 + tan^2theta + tan^2theta) "d"theta`
= `int_0^(pi/6) (sec^2theta)/(2tan^2theta + 1) "d"theta`
tan θ = t रखो
∴ sec2θ dθ = t
सीमाओं को बदलने पर, हम प्राप्त करते हैं
जब θ = 0
∴ t = tan 0 = 0
जब θ = `pi/6`
∴ t = `tan pi/6 = 1/sqrt(3)`
∴ I = `int_0^(1/sqrt(3)) "dt"/(2"t"^2 + 1)`
= `1/2 int_0^(1/sqrt(3)) "dt"/("t"^2 + 1/2)`
= `1/2 int_0^(1/sqrt(3)) "dt"/("t"^2 + (1/sqrt(2))^2)`
= `1/2 xx 1/(1/sqrt(12)) [tan^-1 "t"/(1/sqrt(12))]_0^(1/sqrt(3))`
= `1/sqrt(2) tan^-1 [sqrt(2)"t"]_0^(1/sqrt(3)`
= `1/sqrt(2) [tan^-1 sqrt(2)/sqrt(3) - tan^-1 0]`
= `1/sqrt(2) tan^-1 sqrt(2/3)`
APPEARS IN
RELATED QUESTIONS
`int (3"a"x)/("b"^2 + "c"^2x^2) "d"x` का मान निकालिए।
समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
`int ("d"x)/(sin^2 x cos^2 x)` बराबर है
यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो
यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है
यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है
`int_(-2)^2 |x cos pix| "d"x` बराबर है
निम्नलिखित के मान निकालिए-
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
निम्नलिखित के मान निकालिए-
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(1 + sinx)"d"x`
निम्नलिखित के मान निकालिए-
`int "dt"/sqrt(3"t" - 2"t"^2)`
निम्नलिखित के मान निकालिए-
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
निम्नलिखित के मान निकालिए-
`int x/(x^4 - 1) "d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 "e"^x "d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 ("d"x)/("e"^x + "e"^-x`
निम्नलिखित का मान निकालिए-
`int_1^2 ("d"x)/sqrt((x -1) (2 -x))`
निम्नलिखित का मान निकालिए-
`int_0^1 (x"d"x)/sqrt(1 + x^2`
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
निम्नलिखित का मान निकालिए-
`int sqrt(tanx) "d"x` (संकेत: tanx = t2 रखिए)
निम्नलिखित का मान निकालिए-
`int_0^1 x log(1 + 2x) "d"x`
निम्नलिखित का मान निकालिए-
`int_0^pi x log sin x "d"x`
यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______
यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______
`int_-pi^pi sin^3x cos^2x "d"x` का मान ______.