मराठी

निम्नलिखित का मान निकालिए- d∫-π4π4log|sinx+cosx|dx - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित का मान निकालिए-

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`

बेरीज

उत्तर

मान लीजिए I = `int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`  ......(i)

= `int_(- pi/4)^(pi/4) log|sin(pi/4 - pi/4 - x) + cos(pi/4 - pi/4 - x)|"d"x`  ......`["क्योंकि" int_"a" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x]`

= `int_(- pi/4)^(pi/4) log|sin(-x) + cosx|"d"x`

= `int_(-pi/4)^(pi/4) log|cosx - sinx|"d"x` ......(ii)

(i) और (ii) को जोड़ने पर हमें प्राप्त होता है,

2I = `int_(-pi/4)^(pi/4) log|cosx + sinx|"d"x + int_(-pi/4)^(pi/4) log|cosx - sinx|"d"x`

= `int_(-pi/4)^(pi/4) log|(cosx + sinx)(cosx - sinx)|"d"x`

= `int_(-pi/4)^(pi/4) log|cos^2x - sin^2x|"d"x`

∴ 2I = `int_(-pi/4)^(pi/4) log cos2x  "d"x`

2I = `2 int_0^(pi/4) log cos 2x  "d"x`  .....`["क्योंकि" int_(-"a")^"a" "f"(x)"d"x = 2int_0^"a" "f"(x) "d"x  "if"  "f"(-x) = "f"(x)]`

∴ I = `int_0^(pi/4) log cos 2x  "d"x`

2x = t रखो

⇒ dx = `"dt"//2`

हमें मिलने वाली सीमाओं को बदलना

जब x = 0

∴ t = 0

जब x = `pi/4`

∴ t = `pi/2`

I = `1/2 int_0^(pi/2) log cos "t"  "dt"`  ......(iii)

I = `1/2 int_0^(pi/2) log cos (pi/2 - "t")"dt"`

I = `1/2 int_0^(pi/2) log sin "t"  "dt"`  ......(iv)

(iii) और (iv) को जोड़ने पर, हम प्राप्त करते हैं,

2I = `1/2 int_0^(pi/2) (log cos "t" + log sin "t")"dt"`

⇒ 2I = `1/2 int_0^(pi/2) log sin "t" cos "t"  "dt"`

⇒ 2I = `1/2 int_0^(pi/2) (log 2 sin "t" cos "t")/2 "dt"`

⇒ 2I = `1/2 int_0^(pi/2) (log sin 2"t" - log 2) "dt"`

⇒ 4I = `int_0^(pi/2) log sin 2"t"  "dt" - int_0^(pi/2) log 2  "dt"`

2t = u रखिए

⇒ 2dt = du

⇒ dt = `"du"/2`

∴ 4I = `1/2 int_0^pi log sin "u"  "du" - int_0^(pi/2) log 2 * "dt"`

⇒ 4I = `1/2 xx 2 int_0^(pi/2) log sin "u"  "du" - log 2["t"]_0^(pi/2)`

⇒ 4I = `int_0^(pi/2) log sin "u"  "du" - log 2 * pi/2`

⇒ 4I = `2"I" - pi/2 log 2`  .....[समीकरण (ii) से]

⇒ 2I = `- pi/2 log 2`

⇒ I = `pi/4 log  1/2`

∴ I = `pi/4 log  1/2`.

shaalaa.com
समाकलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: समाकल - प्रश्नावली [पृष्ठ १६२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 7 समाकल
प्रश्नावली | Q 47 | पृष्ठ १६२

संबंधित प्रश्‍न

`int tan ^8 xsec^4 x"d"x` का मान निकालिए।


`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।


`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।


`int "e"^x (cosx - sinx)"d"x`  बराबर है


यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


निम्नलिखित के मान निकालिए-

`int ("d"x)/(1 + cos x)`


निम्नलिखित के मान निकालिए-

`int tan^2x sec^4 x"d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(1 + sinx)"d"x`


निम्नलिखित के मान निकालिए-

`int "dt"/sqrt(3"t" - 2"t"^2)`


निम्नलिखित के मान निकालिए-

`int sqrt(5 - 2x + x^2) "d"x`


निम्नलिखित के मान निकालिए-

`int x^2/(1 - x^4) "d"x`  [x2 = t रखिए]


निम्नलिखित के मान निकालिए-

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


निम्नलिखित का मान निकालिए-

`int_0^1 (x"d"x)/sqrt(1 + x^2`


निम्नलिखित का मान निकालिए-

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2)) `


निम्नलिखित का मान निकालिए-

`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`


निम्नलिखित का मान निकालिए-

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को  cos4x से भाग दीजिए)


निम्नलिखित का मान निकालिए-

`int_0^1 x log(1 + 2x)  "d"x`


`int tan^-1 sqrtx  "d"x` बराबर है


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` बराबर है


`int (x^9  "d"x)/(4x^2 + 1)^6` बराबर है


यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______


यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______


 `int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` बराबर है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×