मराठी

D∫0π21-sin2x dx बराबर है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` बराबर है

पर्याय

  • `2sqrt(2)`

  • `2(sqrt(2) + 1)`

  • 2

  • `2(sqrt(2) - 1)`

MCQ

उत्तर

सही उत्तर  `underline(2(sqrt(2) - 1))` है।

व्याख्या:

मान लीजिए I = `int_0^(pi/2) sqrt(1 - sin2x)  "d"x`

= `int_0^(pi/2) sqrt((sin^2x + cos^2x - 2 sinx cosx))  "d"x`

= `int_0^(pi/2) sqrt((sinx - cosx)^2)  "d"x`

= `int_0^(pi/2) +- (sinx - cosx)  "d"x`

= `int_0^(pi/4) - (sin x - cosx)  "d"x + int_(pi/4)^(pi/2) (sinx - cosx)  "dx`

= `int_0^(pi/4) (cosx - sinx)  "d"x + int_(pi/4)^(pi/2) (sinx - cosx)  "d"x`

= `[sinx + cosx]_0^(pi/4) + [- cosx - sinx]_(pi/4)^(pi/2)`

= `[(sin  pi/4 + cos  pi/4) - (sin0 - cos0)] - [(cos  pi/2 + sin  pi/2) - (cos  pi/4 + sin  pi/4)]`

= `[(1/sqrt(2) + 1/sqrt(2)) - (+ 1)] - [(0 + 1) - (1/sqrt(2) + 1/sqrt(2))]`

= `(2/sqrt(2) - 1) - (1 - 2/sqrt(2))`

= `2/sqrt(2) - 1 -1 + 2/(sqrt(2))`

= `4/sqrt(2) - 2`

= `2sqrt(2) - 2`

= `2(sqrt(2) - 1)`.

shaalaa.com
समाकलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: समाकल - प्रश्नावली [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 7 समाकल
प्रश्नावली | Q 58 | पृष्ठ १६४

संबंधित प्रश्‍न

`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।


 `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।


 `(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।


`int_-1^2 f (x)  "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1| 


यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो


यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है


`int_(-2)^2 |x cos pix| "d"x`  बराबर है


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


निम्नलिखित के मान निकालिए-

`int ((x^2 + 2))/(x + 1) "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/(1 + cos x)`


निम्नलिखित के मान निकालिए-

`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`


निम्नलिखित के मान निकालिए-

`int x^2/(1 - x^4) "d"x`  [x2 = t रखिए]


निम्नलिखित के मान निकालिए-

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


निम्नलिखित के मान निकालिए-

`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`


निम्नलिखित के मान निकालिए-

`int (cos x - cos 2x)/ (1 - cos x)"d"x`


निम्नलिखित का योग की सीमा के रूप में मान निकालिए-

`int_0^2 (x^2 + 3)"d"x`


निम्नलिखित का मान निकालिए-

`int_0^1 (x"d"x)/sqrt(1 + x^2`


निम्नलिखित का मान निकालिए-

`int_0^x xsin x cos^2 x"d"x`


निम्नलिखित का मान निकालिए-

`int (x^2"d"x)/(x^4 - x^2 - 12)`


निम्नलिखित का मान निकालिए-

`int_"0"^pi  (x"d"x)/(1 + sin x)`


निम्नलिखित का मान निकालिए-

`int sin^-1 sqrt(x/("a" + x)) "d"x`  (संकेत: x = a tan2θ रखिए)


निम्नलिखित का मान निकालिए-

`int_0^1 x log(1 + 2x)  "d"x`


`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` बराबर है


 `int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×