हिंदी

D∫0π21-sin2x dx बराबर है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` बराबर है

विकल्प

  • `2sqrt(2)`

  • `2(sqrt(2) + 1)`

  • 2

  • `2(sqrt(2) - 1)`

MCQ

उत्तर

सही उत्तर  `underline(2(sqrt(2) - 1))` है।

व्याख्या:

मान लीजिए I = `int_0^(pi/2) sqrt(1 - sin2x)  "d"x`

= `int_0^(pi/2) sqrt((sin^2x + cos^2x - 2 sinx cosx))  "d"x`

= `int_0^(pi/2) sqrt((sinx - cosx)^2)  "d"x`

= `int_0^(pi/2) +- (sinx - cosx)  "d"x`

= `int_0^(pi/4) - (sin x - cosx)  "d"x + int_(pi/4)^(pi/2) (sinx - cosx)  "dx`

= `int_0^(pi/4) (cosx - sinx)  "d"x + int_(pi/4)^(pi/2) (sinx - cosx)  "d"x`

= `[sinx + cosx]_0^(pi/4) + [- cosx - sinx]_(pi/4)^(pi/2)`

= `[(sin  pi/4 + cos  pi/4) - (sin0 - cos0)] - [(cos  pi/2 + sin  pi/2) - (cos  pi/4 + sin  pi/4)]`

= `[(1/sqrt(2) + 1/sqrt(2)) - (+ 1)] - [(0 + 1) - (1/sqrt(2) + 1/sqrt(2))]`

= `(2/sqrt(2) - 1) - (1 - 2/sqrt(2))`

= `2/sqrt(2) - 1 -1 + 2/(sqrt(2))`

= `4/sqrt(2) - 2`

= `2sqrt(2) - 2`

= `2(sqrt(2) - 1)`.

shaalaa.com
समाकलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: समाकल - प्रश्नावली [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 7 समाकल
प्रश्नावली | Q 58 | पृष्ठ १६४

संबंधित प्रश्न

समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।


`int_0^(pi/4) sqrt(1 + sin2x)  "d"x` ज्ञात कीजिए।


`int_-1^2 f (x)  "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1| 


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है


`int (sin^6x)/(cos^8x) "d"x` = ______.


निम्नलिखित का सत्यापन कीजिए-

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


निम्नलिखित के मान निकालिए-

`int ((x^2 + 2))/(x + 1) "d"x`


निम्नलिखित के मान निकालिए-

`int tan^2x sec^4 x"d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(("a" + x)/("a" - x)) "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/sqrt(16 - 9x^2)`


निम्नलिखित के मान निकालिए-

`int sqrt(5 - 2x + x^2) "d"x`


निम्नलिखित के मान निकालिए-

`int x/(x^4 - 1) "d"x`


निम्नलिखित के मान निकालिए-

`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`


निम्नलिखित के मान निकालिए-

`int (cos x - cos 2x)/ (1 - cos x)"d"x`


निम्नलिखित का योग की सीमा के रूप में मान निकालिए-

`int_0^2 (x^2 + 3)"d"x`


निम्नलिखित का मान निकालिए-

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2)) `


निम्नलिखित का मान निकालिए-

`int sin^-1 sqrt(x/("a" + x)) "d"x`  (संकेत: x = a tan2θ रखिए)


निम्नलिखित का मान निकालिए-

`int_0^1 x log(1 + 2x)  "d"x`


`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है


 `int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` के = ______


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______


`int sinx/(3 + 4cos^2x) "d"x` = ______.


`int_-pi^pi sin^3x cos^2x  "d"x` का मान ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×