Advertisements
Advertisements
प्रश्न
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` बराबर है
विकल्प
`2sqrt(2)`
`2(sqrt(2) + 1)`
2
`2(sqrt(2) - 1)`
उत्तर
सही उत्तर `underline(2(sqrt(2) - 1))` है।
व्याख्या:
मान लीजिए I = `int_0^(pi/2) sqrt(1 - sin2x) "d"x`
= `int_0^(pi/2) sqrt((sin^2x + cos^2x - 2 sinx cosx)) "d"x`
= `int_0^(pi/2) sqrt((sinx - cosx)^2) "d"x`
= `int_0^(pi/2) +- (sinx - cosx) "d"x`
= `int_0^(pi/4) - (sin x - cosx) "d"x + int_(pi/4)^(pi/2) (sinx - cosx) "dx`
= `int_0^(pi/4) (cosx - sinx) "d"x + int_(pi/4)^(pi/2) (sinx - cosx) "d"x`
= `[sinx + cosx]_0^(pi/4) + [- cosx - sinx]_(pi/4)^(pi/2)`
= `[(sin pi/4 + cos pi/4) - (sin0 - cos0)] - [(cos pi/2 + sin pi/2) - (cos pi/4 + sin pi/4)]`
= `[(1/sqrt(2) + 1/sqrt(2)) - (+ 1)] - [(0 + 1) - (1/sqrt(2) + 1/sqrt(2))]`
= `(2/sqrt(2) - 1) - (1 - 2/sqrt(2))`
= `2/sqrt(2) - 1 -1 + 2/(sqrt(2))`
= `4/sqrt(2) - 2`
= `2sqrt(2) - 2`
= `2(sqrt(2) - 1)`.
APPEARS IN
संबंधित प्रश्न
समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
`int_-1^2 f (x) "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1|
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है
`int (sin^6x)/(cos^8x) "d"x` = ______.
निम्नलिखित का सत्यापन कीजिए-
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
निम्नलिखित के मान निकालिए-
`int ((x^2 + 2))/(x + 1) "d"x`
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(("a" + x)/("a" - x)) "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/sqrt(16 - 9x^2)`
निम्नलिखित के मान निकालिए-
`int sqrt(5 - 2x + x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int x/(x^4 - 1) "d"x`
निम्नलिखित के मान निकालिए-
`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 (x^2 + 3)"d"x`
निम्नलिखित का मान निकालिए-
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2)) `
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
निम्नलिखित का मान निकालिए-
`int_0^1 x log(1 + 2x) "d"x`
`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है
`int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______
`int sinx/(3 + 4cos^2x) "d"x` = ______.
`int_-pi^pi sin^3x cos^2x "d"x` का मान ______.