Advertisements
Advertisements
प्रश्न
निम्नलिखित के मान निकालिए-
`int sqrt(5 - 2x + x^2) "d"x`
उत्तर
मान लीजिए I = `int sqrt(5 - 2x + x^2) "d"x`
= `int sqrt(x^2 - 2x + 5) "d"x`
= `int sqrt(x^2 - 2x + 1 - 1 + 5) "d"x` ....(पूर्ण वर्ग बनाना)
= `int sqrt((x - 1)^2 + 4) "d"x`
= `int sqrt((x - 1)^2 + (2)^2) "d"x`
= `(x - 1)/2 sqrt((x - 1)^2 + (2)^2) + 4/2 log|(x - 1) + sqrt((x + 1)^2 + (2)^2)| + "C"` .......`["क्योंकि" int sqrt(x^2 + "a"^2) "d"x = x/2 sqrt(x^2 + "a"^2) + "a"^2/2 {log|x + sqrt(x^2 + "a"^2)|} + "C"]`
= `(x - 1)/2 sqrt(x^2 + 1 - 2x + 4) + 2log |(x - 1) + sqrt(x - 1) + sqrt(x^2 + 1 - 2x + 4)| + "C"`
= `(x - 1)/2 sqrt(x^2 - 2x + 5) + 2log|(x - 1) + sqrt(x^2 - 2x + 5)| + "C"`
अत:, I = `(x - 1)/2 sqrt(x^2 - 2x + 5) + 2log|(x - 1) + sqrt(x^2 - 2x + 5)| + "C"`
APPEARS IN
संबंधित प्रश्न
`int (3"a"x)/("b"^2 + "c"^2x^2) "d"x` का मान निकालिए।
`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।
`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।
`int sqrt(10 - 4x + 4x^2) "d"x` ज्ञात कीजिए।
यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है
`int_(-2)^2 |x cos pix| "d"x` बराबर है
`int (sin^6x)/(cos^8x) "d"x` = ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
निम्नलिखित का सत्यापन कीजिए-
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
निम्नलिखित का सत्यापन कीजिए-
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(1 + cos x)`
निम्नलिखित के मान निकालिए-
`int x^(1/2)/(1 + x^(3/4)) "d"x` (संकेत: `sqrt(x)` = z4 रखिए)
निम्नलिखित के मान निकालिए-
`int ("d"x)/sqrt(16 - 9x^2)`
निम्नलिखित के मान निकालिए-
`int "dt"/sqrt(3"t" - 2"t"^2)`
निम्नलिखित के मान निकालिए-
`int x^2/(1 - x^4) "d"x` [x2 = t रखिए]
निम्नलिखित के मान निकालिए-
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
निम्नलिखित के मान निकालिए-
`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(xsqrt(x^4 - 1))` (संकेत: x2 = sec `theta` रखिए)
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 (x^2 + 3)"d"x`
निम्नलिखित का मान निकालिए-
`int_1^2 ("d"x)/sqrt((x -1) (2 -x))`
निम्नलिखित का मान निकालिए-
`int_0^1 (x"d"x)/sqrt(1 + x^2`
निम्नलिखित का मान निकालिए-
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
निम्नलिखित का मान निकालिए-
`int "e"^(-3x) cos^3x "d"x`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
`int sinx/(3 + 4cos^2x) "d"x` = ______.