Advertisements
Advertisements
प्रश्न
निम्नलिखित के मान निकालिए-
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
उत्तर
मान लीजिए I = `int (3x - 1)/sqrt(x^2 + 9) "d"x`
= `int (3x)/sqrt(x^2 + 9) "d"x - int 1/sqrt(x^2 + 9) "d"x`
I = I1 – I2
अब I1 = `int (3x)/sqrt(x^2 + 9) "d"x`
x2 + 9 = t रखिए
⇒ 2x dx = dt
x dx = – dt
∴ I1 = `3/2 int "dt"/sqrt("t")`
= `3/2 * 2sqrt("t") + "C"_1`
= `3sqrt(x^2 + 9) + "C"_1`
I2 = `int 1/sqrt(x^2 + 9) "d"x`
= `int 1/sqrt(x^2 + (3)^2) "d"x`
= `log|x + sqrt(x^2 + (3)^2)| + "C"_2` ....`["क्योंकि" int 1/sqrt(x^2 + "a"^2) "d"x = log|x + sqrt(x^2 + "a"^2)| + "C"]`
= `log|x + sqrt(x^2 + 9)| + "C"_2`
∴ I = I1 – I2
= `3sqrt(x^2 + 9) + "C"_1 - log|x + sqrt(x^2 + 9)| - "C"_2`
= `3sqrt(x^2 + 9) - log|x + sqrt(x^2 + 9)| + ("C"_1 - "C"_2)`
अत:, I = `3sqrt(x^2 + 9) - log|x + sqrt(x^2 + 9)| + "C"`
APPEARS IN
संबंधित प्रश्न
`int (3"a"x)/("b"^2 + "c"^2x^2) "d"x` का मान निकालिए।
समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x` का मान निकालिए।
`int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।
`int x^2tan^-1 x"d"x` ज्ञात कीजिए।
`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।
यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है
निम्नलिखित के मान निकालिए-
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
निम्नलिखित के मान निकालिए-
`int x^(1/2)/(1 + x^(3/4)) "d"x` (संकेत: `sqrt(x)` = z4 रखिए)
निम्नलिखित के मान निकालिए-
`int sqrt(1 + x^2)/x^4 "d"x`
निम्नलिखित के मान निकालिए-
`int "dt"/sqrt(3"t" - 2"t"^2)`
निम्नलिखित के मान निकालिए-
`int x^2/(1 - x^4) "d"x` [x2 = t रखिए]
निम्नलिखित के मान निकालिए-
`int sqrt(2"a"x - x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(xsqrt(x^4 - 1))` (संकेत: x2 = sec `theta` रखिए)
निम्नलिखित का मान निकालिए-
`int_0^1 ("d"x)/("e"^x + "e"^-x`
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
निम्नलिखित का मान निकालिए-
`int_"0"^pi (x"d"x)/(1 + sin x)`
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को cos4x से भाग दीजिए)
निम्नलिखित का मान निकालिए-
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`("d"x)/(sin (x - "a") sin (x - "b"))` बराबर है
`int (x^9 "d"x)/(4x^2 + 1)^6` बराबर है
`int (x + sinx)/(1 + cosx) "d"x` बराबर है
यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` बराबर है