हिंदी

निम्नलिखित के मान निकालिए- d∫3x-1x2+9dx - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित के मान निकालिए-

`int (3x - 1)/sqrt(x^2 + 9) "d"x`

योग

उत्तर

मान लीजिए I = `int (3x - 1)/sqrt(x^2 + 9) "d"x`

= `int (3x)/sqrt(x^2 + 9) "d"x - int 1/sqrt(x^2 + 9) "d"x`

I = I1 – I2

अब I1 = `int (3x)/sqrt(x^2 + 9) "d"x`

x2 + 9 = t रखिए

⇒ 2x dx = dt

x dx = – dt

∴ I1 = `3/2 int "dt"/sqrt("t")`

= `3/2 * 2sqrt("t") + "C"_1`

= `3sqrt(x^2 + 9) + "C"_1`

I2 = `int 1/sqrt(x^2 + 9) "d"x`

= `int 1/sqrt(x^2 + (3)^2) "d"x`

= `log|x + sqrt(x^2 + (3)^2)| + "C"_2`  ....`["क्योंकि" int 1/sqrt(x^2 + "a"^2) "d"x = log|x + sqrt(x^2 + "a"^2)| + "C"]`

= `log|x + sqrt(x^2 + 9)| + "C"_2`

∴ I = I1 – I2 

= `3sqrt(x^2 + 9) + "C"_1 - log|x + sqrt(x^2 + 9)| - "C"_2`

= `3sqrt(x^2 + 9) - log|x + sqrt(x^2 + 9)| + ("C"_1 - "C"_2)`

अत:, I = `3sqrt(x^2 + 9) - log|x + sqrt(x^2 + 9)| + "C"`

shaalaa.com
समाकलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: समाकल - प्रश्नावली [पृष्ठ १६०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 7 समाकल
प्रश्नावली | Q 16 | पृष्ठ १६०

संबंधित प्रश्न

`int (3"a"x)/("b"^2 + "c"^2x^2) "d"x` का मान निकालिए।


समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x`  का मान निकालिए।


 `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।


`int x^2tan^-1 x"d"x` ज्ञात कीजिए।


`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।


यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है


निम्नलिखित के मान निकालिए-

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


निम्नलिखित के मान निकालिए-

`int x^(1/2)/(1 + x^(3/4)) "d"x`   (संकेत: `sqrt(x)` = z4 रखिए)


निम्नलिखित के मान निकालिए-

`int sqrt(1 + x^2)/x^4 "d"x`


निम्नलिखित के मान निकालिए-

`int "dt"/sqrt(3"t" - 2"t"^2)`


निम्नलिखित के मान निकालिए-

`int x^2/(1 - x^4) "d"x`  [x2 = t रखिए]


निम्नलिखित के मान निकालिए-

`int sqrt(2"a"x - x^2)  "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/(xsqrt(x^4 - 1))`  (संकेत: x= sec `theta` रखिए)


निम्नलिखित का मान निकालिए-

`int_0^1 ("d"x)/("e"^x + "e"^-x`


निम्नलिखित का मान निकालिए-

`int (x^2"d"x)/(x^4 - x^2 - 12)`


निम्नलिखित का मान निकालिए-

`int_"0"^pi  (x"d"x)/(1 + sin x)`


निम्नलिखित का मान निकालिए-

`int sin^-1 sqrt(x/("a" + x)) "d"x`  (संकेत: x = a tan2θ रखिए)


निम्नलिखित का मान निकालिए-

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को  cos4x से भाग दीजिए)


निम्नलिखित का मान निकालिए-

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


 `("d"x)/(sin (x - "a") sin (x - "b"))` बराबर है


`int (x^9  "d"x)/(4x^2 + 1)^6` बराबर है


`int (x + sinx)/(1 + cosx) "d"x` बराबर है


यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` बराबर है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×