Advertisements
Advertisements
प्रश्न
निम्नलिखित का मान निकालिए-
`int_0^1 ("d"x)/("e"^x + "e"^-x`
उत्तर
मान लीजिए I = `int_0^1 ("d"x)/("e"^x + "e"^-x`
= `int_0^1 ("d"x)/("e"^x + 1/"e"^x`
= `int_0^1 ("d"x)/(("e"^(2x) +1)/"e"^x)`
= `int_0^1 ("e"^x"d"x)/("e"^(2x) + 1)`
ex = t रखो
⇒ ex dx = dt
सीमा बदलना, हमारे पास है
जब x = 0
∴ t = e0 = 1
जब x = 1
∴ I = `int_1^"e" ("dt")/("t"^2 + 1)`
= `[tan^-1 "t"] _1^e`
= `[tan^-1 "e" - tan^-1 (1)]`
= `tan ^1 "e" - pi/4`
अत:, I = `tan^-1 "e" - pi/4`
APPEARS IN
संबंधित प्रश्न
`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।
`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।
`int tan ^8 xsec^4 x"d"x` का मान निकालिए।
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
`(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।
`int "e"^x (cosx - sinx)"d"x` बराबर है
यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है
`int_(-"a")^"a" "f"(x) "d"x` = 0 है, यदि f एक ______ फलन है।
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int sqrt(("a" + x)/("a" - x)) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(5 - 2x + x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int x/(x^4 - 1) "d"x`
निम्नलिखित के मान निकालिए-
`int x^2/(1 - x^4) "d"x` [x2 = t रखिए]
निम्नलिखित के मान निकालिए-
`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 "e"^x "d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 x log(1 + 2x) "d"x`
`("d"x)/(sin (x - "a") sin (x - "b"))` बराबर है
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` बराबर है
`int (x^9 "d"x)/(4x^2 + 1)^6` बराबर है
`int x^3/(x + 1)` बराबर है
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______
यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______