Advertisements
Advertisements
Question
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
Solution
मान लीजिए I = `int (sin^6x + cos^6x)/(sin^2x * cos^2x) "d"x`
= `int ((sin^2x)^3 + (cos^2x)^3)/(sin^2x * cos^2x) "d"x`
= `int ((sin^2x + cos^2x)^3 - 3sin^2x cos^2x(sin^2x + cos^2x))/(sin^2x * cos^2x) "d"x` ......[∵ a3 + b3 = (a + b)3 – 3ab(a + b)]
= `int ((1)^3 - 3sin^2x cos^2x * (1))/(sin^2x cos^2x) "d"x`
= `int (1 - 3sin^2x cos^2x)/(sin^2x cos^2x) "d"x`
= `int (1/(sin^2x cos^2x) - (3sin^2x cos^2x)/(sin^2x cos^2x)) "d"x`
= `int (1/(sin^2x + cos^2x) - 3)"d"x`
= `int ((sin^2x + cos^2x)/(sin^2x cos^2x) - 3) "d"x`
= `int [(1/(cos^2x) + 1/(sin^2x)) - 3]"d"x`
= `int (sec^2x + "cosec"^2x - 3) "d"x`
= `int sec^2x "d"x + int "cosec"^2x "d"x - 3 int 1"d"x`
= tan x – cot x – 3x + C
अत:, I = tan x – cot x – 3x + C.
APPEARS IN
RELATED QUESTIONS
समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
`int tan ^8 xsec^4 x"d"x` का मान निकालिए।
`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
`int x^2tan^-1 x"d"x` ज्ञात कीजिए।
`int ("d"x)/(sin^2 x cos^2 x)` बराबर है
`int_(a+c)^(b+c) "f" (x) "d"x` बराबर है
यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` बराबर है
`int_(-2)^2 |x cos pix| "d"x` बराबर है
`int_(-"a")^"a" "f"(x) "d"x` = 0 है, यदि f एक ______ फलन है।
निम्नलिखित के मान निकालिए-
`int ((x^2 + 2))/(x + 1) "d"x`
निम्नलिखित के मान निकालिए-
`int ((1 + cosx))/(x + sinx) "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(1 + cos x)`
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int x^(1/2)/(1 + x^(3/4)) "d"x` (संकेत: `sqrt(x)` = z4 रखिए)
निम्नलिखित के मान निकालिए-
`int ("d"x)/sqrt(16 - 9x^2)`
निम्नलिखित के मान निकालिए-
`int sqrt(5 - 2x + x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int x^2/(1 - x^4) "d"x` [x2 = t रखिए]
निम्नलिखित के मान निकालिए-
`int sqrt(2"a"x - x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(xsqrt(x^4 - 1))` (संकेत: x2 = sec `theta` रखिए)
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
निम्नलिखित का मान निकालिए-
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
`int x^3/(x + 1)` बराबर है
`int (x + sinx)/(1 + cosx) "d"x` बराबर है
यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______