Advertisements
Advertisements
Question
`int x^2tan^-1 x"d"x` ज्ञात कीजिए।
Solution
I = `int x^2tan^-1x"d"x`
= `tan^-1x int x^2 "d"x - int 1/(1 + x^2) * x^3/3 "d"x`
= `x^3/3 tan^-1x - 1/3 int (x - x/(1 + x^2))"d"x`
= `x^3/3 tan^-1x - x^2/6 + 1/6 log|1 + x^2| + "C"`
APPEARS IN
RELATED QUESTIONS
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x` का मान निकालिए।
`int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
`int_-1^2 f (x) "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1|
यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.
निम्नलिखित का सत्यापन कीजिए-
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
निम्नलिखित का सत्यापन कीजिए-
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
निम्नलिखित के मान निकालिए-
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
निम्नलिखित के मान निकालिए-
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(("a" + x)/("a" - x)) "d"x`
निम्नलिखित के मान निकालिए-
`int x^(1/2)/(1 + x^(3/4)) "d"x` (संकेत: `sqrt(x)` = z4 रखिए)
निम्नलिखित के मान निकालिए-
`int sqrt(1 + x^2)/x^4 "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(5 - 2x + x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int x/(x^4 - 1) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 (x"d"x)/sqrt(1 + x^2`
निम्नलिखित का मान निकालिए-
`int_0^x xsin x cos^2 x"d"x`
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
निम्नलिखित का मान निकालिए-
`int_"0"^pi (x"d"x)/(1 + sin x)`
निम्नलिखित का मान निकालिए-
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 x log(1 + 2x) "d"x`
`int x^3/(x + 1)` बराबर है