English

निम्नलिखित के मान निकालिए- d∫tan2xsec4xdx - Mathematics (गणित)

Advertisements
Advertisements

Question

निम्नलिखित के मान निकालिए-

`int tan^2x sec^4 x"d"x`

Sum

Solution

मान लीजिए I = `int tan^2x sec^4 x"d"x`

= `int tan^2x sec^2x sec^2 x"d"x`

= `int tan^2x (1 + tan^2x)sec^2 x"d"x`

tan x = t रखिए

⇒ `sec^2x "d"x` = dt

∴ I = `int "t"^2(1 + "t"^2)"dt"`

= `int("t"^2 + "t"^4)"dt"`

= `"t"^3/3 + "t"^5/5 + "C"`

= `(tan^5x)/5 + (tan^3x)/3 + "C"`

shaalaa.com
समाकलन
  Is there an error in this question or solution?
Chapter 7: समाकल - प्रश्नावली [Page 160]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 7 समाकल
प्रश्नावली | Q 7 | Page 160

RELATED QUESTIONS

समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-

`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`


`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।


 `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।


`int_0^(pi/4) sqrt(1 + sin2x)  "d"x` ज्ञात कीजिए।


दर्शाइए कि  `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो


यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"`  बराबर है


`int_(-2)^2 |x cos pix| "d"x`  बराबर है


निम्नलिखित का सत्यापन कीजिए-

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


निम्नलिखित के मान निकालिए-

`int ((1 + cosx))/(x + sinx) "d"x`


निम्नलिखित के मान निकालिए-

`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`


निम्नलिखित के मान निकालिए-

`int sqrt(("a" + x)/("a" - x)) "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/sqrt(16 - 9x^2)`


निम्नलिखित के मान निकालिए-

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


निम्नलिखित के मान निकालिए-

`int x^2/(1 - x^4) "d"x`  [x2 = t रखिए]


निम्नलिखित के मान निकालिए-

`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`


निम्नलिखित का मान निकालिए-

`int_0^1 ("d"x)/("e"^x + "e"^-x`


निम्नलिखित का मान निकालिए-

`int_0^x xsin x cos^2 x"d"x`


निम्नलिखित का मान निकालिए-

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को  cos4x से भाग दीजिए)


निम्नलिखित का मान निकालिए-

`int_0^1 x log(1 + 2x)  "d"x`


`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है


यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______


`int (x + sinx)/(1 + cosx) "d"x` बराबर है


 `int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` बराबर है


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` के = ______


यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×