मराठी

निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है। Z+ में, a* b = ab द्वारा परिभाषित - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है।

Z+ में, a* b = ab द्वारा परिभाषित

बेरीज

उत्तर

Z+ पर, * द्वारा परिभाषित किया गया है a * b = ab.

यह देखा जा सकता है कि:

(2 . 3) . 4 = 23 . 4 = 8 . 4 = 84 = (23)4 = 212

2 . (3 . 4) = 2 . 34 = 2 . 81 = 281

∴ (2 * 3) * 4 ≠ 2 * (3 * 4) कहाँ पे 2, 3, 4 ∈ Z+

इसलिए, ऑपरेशन * सहयोगी नहीं है |

shaalaa.com
द्वि-आधारी संक्रियाएँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: संबंध एवं फलन - प्रश्नावली 1.4 [पृष्ठ २७]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
पाठ 1 संबंध एवं फलन
प्रश्नावली 1.4 | Q 2. (v) | पृष्ठ २७

संबंधित प्रश्‍न

निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।

Z+ में, a * b = a - b द्वारा परिभाषित संक्रिया *


निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।

R में, संक्रिया *, a * b = ab2 द्वारा परिभाषित


निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया से * एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।

Z+ में, संक्रिया *, a * b = a द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमय है तथा क्या * साहचर्य है।

Z में, a * b = a - b द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या  * साहचर्य है।

Q में, a * b = `(ab)/2`  द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है।

Z+ में, a * b = 2ab द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है।

R - {- 1} में, a * b = `a/(b + 1)` द्वारा परिभाषित


समुच्चय {1, 2, 3, 4,5} में a ∧ b = निम्नतम {a, b} द्वारा परिभाषित द्विआधारी संक्रिया पर विचार कीजिए। संक्रिया ∧ के लिए संक्रिया सारणी लिखिए।


मान लीजिए कि N में एक द्विआधारी संक्रिया *, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:

5 * 7, 20 * 16


मान लीजिए कि N में एक द्विआधारी संक्रिया *, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:

क्या संक्रिय * क्रमविनिमेय है?


मान लीजिए कि N में एक द्विआधारी संक्रिया *, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:

क्या * साहचर्य है?


मान लीजिए कि N में एक द्विआधारी संक्रिया *, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:

N में * का तत्समक अवयव ज्ञात कीजिए।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

a * b = a - b

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

a * b = a2 + b2

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

a * b = a + ab

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

a * b = (a - b)2

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

`a * b = a^b/4`

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

a * b = ab2

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


बतलाइए कि क्या निम्नलिखित कथन सत्य हैं या असत्य हैं। औचित्य भी बतलाइए।

समुच्चय N में किसी भी स्वेच्छ द्विआधारी संक्रिया* के लिए a * a = a, ∀ a ∈ N

यदि N में * एक क्रमविनिमेय द्विआधारी संक्रिया है तो a * (b * c)=(c * b) * a


a * b = |a - b| तथा a o b = a, ∀ a, b ∈ R द्वारा परिभाषित द्विआधारी संक्रियाओं * : R × R → R तथा o : R × R → R पर विचार कीजिए | सिद्ध कीजिए कि * क्रमविनिमेय है परंतु साहचर्य नहीं है, o साहचर्य है परंतु क्रमविनिमेय नहीं है | पुनः सिद्ध कीजिए कि सभी a, b, c ∈ R के लिए a * (b o c) = (a * b) o (a * c) है | यदि ऐसा होता है, तो हम कहते हैं कि संक्रिया * संक्रिया o पर वितरित होती है | क्या o संक्रिया * पर वितरित है? अपने उत्तर का औचित्य भी बतलाइए |


निम्नलिखित प्रकार से समुच्चय {0, 1, 2, 3, 4, 5} में एक द्विआधारी संक्रिया * परिभाषित कीजिए

a * b = `{(a+b","   "यदि"  a+b < 6), (a + b - 6","   "यदि"  a + b ≥ 6):}`

सिद्ध कीजिए कि शुन्य (0) इस संक्रिया का तत्समक है तथा समुच्चय का प्रत्येक अवयव a ≠ 0 व्युत्क्रमणीय है, इस प्रकार कि 6 - a, a का प्रतिलोम है |


समुच्चय {a, b} में द्विआधारी संक्रियाओं की संख्या है |


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×