मराठी

समुच्चय {a, b} में द्विआधारी संक्रियाओं की संख्या है | - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

समुच्चय {a, b} में द्विआधारी संक्रियाओं की संख्या है |

पर्याय

  • 10

  • 16

  • 20

  • 8

MCQ
एका वाक्यात उत्तर

उत्तर

समुच्वय (a, b) में द्विआधारी संक्रियाओं की संख्या = 24 = 16 होगी।

shaalaa.com
द्वि-आधारी संक्रियाएँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: संबंध एवं फलन - अध्याय 1 पर विविध प्रश्नावली [पृष्ठ ३५]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
पाठ 1 संबंध एवं फलन
अध्याय 1 पर विविध प्रश्नावली | Q 19. | पृष्ठ ३५

संबंधित प्रश्‍न

निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।

R में, संक्रिया *, a * b = ab2 द्वारा परिभाषित


निर्धारित कीजिए कि क्या निम्नलिखित प्रकार से परिभाषित संक्रिया * से एक द्विआधारी संक्रिया प्राप्त होती है या नहीं। उस दशा में जब * एक द्विआधारी संक्रिया नहीं है, औचित्य भी बतलाइए।

Z+ में, संक्रिया *, a * b = |a - b| द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमय है तथा क्या * साहचर्य है।

Z में, a * b = a - b द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है।

Q में, a * b = ab + 1 द्वारा परिभाषित


निम्नलिखित परिभाषित द्विआधारी संक्रिया * के लिए निर्धारित कीजिए कि क्या * द्विआधारी क्रमविनिमेय है तथा क्या * साहचर्य है।

Z+ में, a* b = ab द्वारा परिभाषित


समुच्चय {1, 2, 3, 4,5} में a ∧ b = निम्नतम {a, b} द्वारा परिभाषित द्विआधारी संक्रिया पर विचार कीजिए। संक्रिया ∧ के लिए संक्रिया सारणी लिखिए।


समुच्चय {1, 2, 3, 4, 5} में, निम्नलिखित संक्रिया सारणी द्वारा परिभाषित द्विआधारी संक्रिया * पर विचार कीजिए तथा

(i) (2 * 3) * 4 तथा 2 * (3 * 4) का परिकलन कीजिए।

(ii) क्या * क्रमविनिमेय है?

(iii) (2 * 3) * (4 * 5) का परिकलन कीजिए।

(संकेत : निम्न सारणी का प्रयोग कीजिए।)

* 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

मान लीजिए कि समुच्चय {1, 2, 3, 4, 5} में एक द्विआधारी संक्रिया *’, a *’ b = a तथा b का HCF द्वारा परिभाषित है। क्या संक्रिया *’ उर्पयुक्त प्रश्न 4 में परिभाषित संक्रिया * के समान है? अपने उत्तर का औचित्य भी बतलाइए।


मान लीजिए कि N में एक द्विआधारी संक्रिया *, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:

5 * 7, 20 * 16


मान लीजिए कि N में एक द्विआधारी संक्रिया *, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:

क्या संक्रिय * क्रमविनिमेय है?


मान लीजिए कि N में एक द्विआधारी संक्रिया *, a * b = a तथा b का LCM द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए:

N के कौन से अवयव * संक्रिया के लिए व्युत्क्रमणीय है?


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

a * b = a - b

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

a * b = a2 + b2

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

a * b = (a - b)2

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

`a * b = a^b/4`

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


मान लीजिए कि परिमेय संख्याओं के समुच्चय Q में निम्नलिखित प्रकार से परिभाषित * एक द्विआधारी संक्रिया है:

a * b = ab2

ज्ञात कीजिए कि इनमें से कौन सी संक्रियाएँ क्रमविनिमेय हैं और कौनसी साहचर्य हैं।


प्रश्न 9 में दी गई संक्रियाओं में किसी का तत्समक है, वह बतलाइए।


a * b = a3 + b3 प्रकार से परिभाषित N में एक द्विआधारी संक्रिया * पर विचार कीजिए। अब निम्नलिखित में से सही उत्तर का चयन कीजिए।


a * b = |a - b| तथा a o b = a, ∀ a, b ∈ R द्वारा परिभाषित द्विआधारी संक्रियाओं * : R × R → R तथा o : R × R → R पर विचार कीजिए | सिद्ध कीजिए कि * क्रमविनिमेय है परंतु साहचर्य नहीं है, o साहचर्य है परंतु क्रमविनिमेय नहीं है | पुनः सिद्ध कीजिए कि सभी a, b, c ∈ R के लिए a * (b o c) = (a * b) o (a * c) है | यदि ऐसा होता है, तो हम कहते हैं कि संक्रिया * संक्रिया o पर वितरित होती है | क्या o संक्रिया * पर वितरित है? अपने उत्तर का औचित्य भी बतलाइए |


निम्नलिखित प्रकार से समुच्चय {0, 1, 2, 3, 4, 5} में एक द्विआधारी संक्रिया * परिभाषित कीजिए

a * b = `{(a+b","   "यदि"  a+b < 6), (a + b - 6","   "यदि"  a + b ≥ 6):}`

सिद्ध कीजिए कि शुन्य (0) इस संक्रिया का तत्समक है तथा समुच्चय का प्रत्येक अवयव a ≠ 0 व्युत्क्रमणीय है, इस प्रकार कि 6 - a, a का प्रतिलोम है |


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×