Advertisements
Advertisements
प्रश्न
निर्धारित कीजिए कि निम्नलिखित में से किस बहुपद का x – 2 एक गुणनखंड है :
3x2 + 6x – 24
उत्तर
प्रश्न के अनुसार,
माना p(x) = 3x2 + 6x − 24 और g(x) = x – 2
g(x) = x – 2
g(x) का शून्य
⇒ g(x) = 0
x – 2 = 0
x = 2
इसलिए, g(x) का शून्य = 2
इसलिए, x का मान p(x) में रखने पर, हम पाते हैं,
p(2) = 3(2)2 + 6(2) – 24
= 12 + 12 – 24
= 0
चूँकि, शेषफल = शून्य,
हम कह सकते हैं कि,
g(x) = x – 2, p(x) = 3x2 + 6x − 24 का गुणनखंड है।
APPEARS IN
संबंधित प्रश्न
k का मान ज्ञात कीजिए जबकि निम्नलिखित स्थिति में (x - 1), p(x) का एक गुणनखंड हो:
p(x) = `2x^2 + kx + sqrt2`
k का मान ज्ञात कीजिए जबकि निम्नलिखित स्थिति में (x - 1), p(x) का एक गुणनखंड हो:
p(x) = `kx^2 - sqrt2x + 1`
गुणनखंड ज्ञात कीजिए:
12x2 – 7x + 1
गुणनखंड ज्ञात कीजिए:
3x2 – x – 4
गुणनखंड ज्ञात कीजिए:
x3 + 13x2 + 32x + 20
यदि x + 2a बहुपद x5 – 4a2x3 + 2x + 2a + 3 का एक गुणनखंड है, तो a ज्ञात कीजिए।
यदि x + 1 बहुपद ax3 + x2 – 2x + 4a – 9 का एक गुणनखंड है, तो a का मान ज्ञात कीजिए।
निम्नलिखित के मान ज्ञात कीजिए :
x3 – 8y3 – 36xy – 216, जब x = 2y + 6 है।
(2x – 5y)3 – (2x + 5y)3 को सरल कीजिए।
यदि a + b + c = 5 और ab + bc + ca = 10 है, तो सिद्ध कीजिए कि a3 + b3 + c3 – 3abc = – 25 है।