मराठी

Pqr is a Triangle in Which Pq = Pr and S is Any Point on the Side Pq. Through S, a Line Is Drawn Parallel to Qr and Intersecting Pr at T. Prove that Ps = Pt. - Mathematics

Advertisements
Advertisements

प्रश्न

PQR is a triangle in which PQ = PR and S is any point on the side PQ. Through S, a line is drawn parallel to QR and intersecting PR at T. Prove that PS = PT.  

 

उत्तर

Given that PQR is a triangle such that PQ = PRand S is any point on the side PQ and ST ||QR.  

We have to prove PS = PT  

Since, PQ =PR⇒ΔPQR is isosceles 

⇒ ∠Q= ∠R(or)  ∠PQR= ∠ PRQ 

Now,  

∠PST=∠PQR and ∠PTS=∠PRQ     [Corresponding angles as STllQR ] 

Since, ∠PQR=∠PRQ⇒∠PST=∠PTS 

Now, In ΔPST,∠PST=∠PTS 

⇒ ΔPST is an isosceles triangle 

⇒ PS=PT

 

shaalaa.com

Notes

 

 

  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Congruent Triangles - Exercise 12.3 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 12 Congruent Triangles
Exercise 12.3 | Q 7 | पृष्ठ ४७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×