मराठी

Prove that, of any two chords of a circle, the greater chord is nearer to the centre. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that, of any two chords of a circle, the greater chord is nearer to the centre.

बेरीज

उत्तर


Given: A circle with centre O and radius r. OM ⊥ AB and ON ⊥ CD Also AB > CD

To prove: OM < ON

Proof: Join OA and OC.

In right ΔAOM,

AO2 = AM2 + OM2

`=> r^2 = (1/2 AB)^2 + OM^2`

`=> r^2 = 1/4 AB^2 + OM^2`    ...(i)

Again in right ΔONC,

OC2 = NC2 + ON2

`=> r^2 = (1/2 CD )^2 + ON^2`

`=> r^2 = 1/4 CD^2 + ON^2`    ...(ii)

From (i) and (ii)

`1/4 AB^2 + OM^2 = 1/4  CD^2 + ON^2`

But, AB > CD   ...(Given)

∴ ON > OM

`=>` OM < ON

Hence, AB is nearer to the centre than CD.

shaalaa.com
Arc and Chord Properties - If Two Chords Intersect Internally Or Externally Then the Product of the Lengths of the Segments Are Equal
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Tangents and Intersecting Chords - Exercise 18 (C) [पृष्ठ २८५]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 18 Tangents and Intersecting Chords
Exercise 18 (C) | Q 1 | पृष्ठ २८५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×