Advertisements
Advertisements
प्रश्न
Prove that the quadrilateral formed by the bisectors of the angles of a parallelogram is a rectangle.
उत्तर
Given: Let ABCD be a parallelogram and AP, BR, CR, be are the bisectors of ∠A, ∠B, ∠C and ∠D, respectively.
To prove: Quadrilateral PQRS is a rectangle.
Proof: Since, ABCD is a parallelogram, then DC || AB and DA is a transversal.
∠A + ∠D = 180° ...[Sum of cointerior angles of a parallelogram is 180°]
⇒ `1/2` ∠A + `1/2` ∠D = 90° ...[Dividing both sides by 2]
∠PAD + ∠PDA = 90°
∠APD = 90° ...[Since, sum of all angles of a triangle is 180°]
∴ ∠SPQ = 90° ...[Vertically opposite angles]
∠PQR = 90°
∠QRS = 90°
And ∠PSR = 90°
Thus, PQRS is a quadrilateral whose each angle is 90°.
Hence, PQRS is a rectangle.
APPEARS IN
संबंधित प्रश्न
In Fig., below, ABCD is a parallelogram in which ∠A = 60°. If the bisectors of ∠A and ∠B meet at P, prove that AD = DP, PC = BC and DC = 2AD.
In a parallelogram ABCD, determine the sum of angles ∠C and ∠D .
ABCD is a square. AC and BD intersect at O. State the measure of ∠AOB.
The sides AB and CD of a parallelogram ABCD are bisected at E and F. Prove that EBFD is a parallelogram.
In a parallelogram ABCD, write the sum of angles A and B.
In a parallelogram ABCD, if ∠A = (3x − 20)°, ∠B = (y + 15)°, ∠C = (x + 40)°, then find the values of xand y.
We get a rhombus by joining the mid-points of the sides of a
ABCD is a parallelogram in which diagonal AC bisects ∠BAD. If ∠BAC = 35°, then ∠ABC =
P is the mid-point of side BC of a parallelogram ABCD such that ∠BAP = ∠DAP. If AD = 10 cm, then CD =
ABCD is a square, diagonals AC and BD meet at O. The number of pairs of congruent triangles with vertex O are