मराठी

E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. Prove that EF || AB and EF = 12 (AB + CD). [Hint: Join BE and produce it to meet CD produced at G.] - Mathematics

Advertisements
Advertisements

प्रश्न

E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. Prove that EF || AB and EF = `1/2` (AB + CD).

[Hint: Join BE and produce it to meet CD produced at G.]

बेरीज

उत्तर

Given: ABCD is a trapezium in which AB || CD. Also, E and F are respectively the mid-points of sides AD and BC.


Construction: Join BE and produce it to meet CD produced at G, also draw BD which intersects EF at O.

To prove: EF || AB and EF = `1/2` (AB + CD).

Proof: In ΔGCB, E and F are respectively the mid-points of BG and BC, then by mid-point theorem,

EF || GC

But GC || AB or CD || AB   ...[Given]

∴ EF || AB

In ΔADB, AB || EO and E is the mid-point of AD.

Therefore by converse of mid-point theorem, O is mid-point of BD.

Also, EO = `1/2` AB  ...(i)

In ΔBDC, OF || CD and O is the mid-point of BD.

∴ OF = `1/2` CD   [By converse of mid-point theorem] ...(ii)

On adding equations (i) and (ii), we get

EO + OF = `1/2` AB + `1/2` CD

⇒ EF = `1/2` (AB + CD)

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Quadrilaterals - Exercise 8.4 [पृष्ठ ८३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
पाठ 8 Quadrilaterals
Exercise 8.4 | Q 12. | पृष्ठ ८३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that

  1. D is the mid-point of AC
  2. MD ⊥ AC
  3. CM = MA = `1/2AB`

In Fig. below, M, N and P are the mid-points of AB, AC and BC respectively. If MN = 3 cm, NP = 3.5 cm and MP = 2.5 cm, calculate BC, AB and AC.


In the given figure, `square`PQRS and `square`MNRL are rectangles. If point M is the midpoint of side PR then prove that,

  1. SL = LR
  2. LN = `1/2`SQ


In the given figure, M is mid-point of AB and DE, whereas N is mid-point of BC and DF.
Show that: EF = AC.


In triangle ABC, AD is the median and DE, drawn parallel to side BA, meets AC at point E.
Show that BE is also a median.


ABCD is a quadrilateral in which AD = BC. E, F, G and H are the mid-points of AB, BD, CD and Ac respectively. Prove that EFGH is a rhombus.


In Δ ABC, AD is the median and DE is parallel to BA, where E is a point in AC. Prove that BE is also a median.


In parallelogram ABCD, E is the mid-point of AB and AP is parallel to EC which meets DC at point O and BC produced at P.
Prove that:
(i) BP = 2AD
(ii) O is the mid-point of AP.


In triangle ABC ; D and E are mid-points of the sides AB and AC respectively. Through E, a straight line is drawn parallel to AB to meet BC at F.
Prove that BDEF is a parallelogram. If AB = 16 cm, AC = 12 cm and BC = 18 cm,
find the perimeter of the parallelogram BDEF.


In ΔABC, the medians BE and CD are produced to the points P and Q respectively such that BE = EP and CD = DQ. Prove that: A is the mid-point of PQ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×