मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Ratio of Areas of Two Triangles with Equal Heights is 2 : 3. If Base of the Smaller Triangle is 6 Cm Then What is the Corresponding Base of the Bigger Triangle ? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Ratio of areas of two triangles with equal heights is 2 : 3. If base of the smaller triangle is 6 cm then what is the corresponding base of the bigger triangle ?

उत्तर

\[\frac{\text{ Area of smaller triangle }}{\text{ Area of bigger triangle }} = \frac{2}{3}\]
\[ \Rightarrow \frac{\frac{1}{2} \times \text{Height of smaller triangle } \times \text{ Base of smaller triangle }}{\frac{1}{2} \times \text{ Height of bigger triangle } \times \text{ Base of bigger triangle }} = \frac{2}{3}\]
\[ \Rightarrow \frac{6}{\text{ Base of bigger triangle }} = \frac{2}{3}\] 

\[\Rightarrow \text{ Base of bigger triangle } = \frac{3}{2} \times 6\]
\[ = 9\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Similarity - Problem Set 1 [पृष्ठ २७]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
पाठ 1 Similarity
Problem Set 1 | Q 3 | पृष्ठ २७

संबंधित प्रश्‍न

The ratio of the areas of two triangles with the common base is 14 : 9. Height of the larger triangle is 7 cm, then find the corresponding height of the smaller triangle.


In the following figure RP: PK= 3:2, then find the value of A(ΔTRP):A(ΔTPK).


Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6. Find the ratio of areas of these triangles.


In the given figure, BC ⊥ AB, AD ⊥ AB, BC = 4, AD = 8, then find `("A"(∆"ABC"))/("A"(∆"ADB"))`


In adjoining figure, PQ ⊥ BC, AD ⊥ BC then find following ratios.

  1. `("A"(∆"PQB"))/("A"(∆"PBC"))`
  2. `("A"(∆"PBC"))/("A"(∆"ABC"))`
  3. `("A"(∆"ABC"))/("A"(∆"ADC"))`
  4. `("A"(∆"ADC"))/("A"(∆"PQC"))`

In the given figure, ∠ABC = ∠DCB = 90° AB = 6, DC = 8 then `("A(Δ ABC)")/("A(Δ DCB)")` = ?


In the figure, PM = 10 cm, A(∆PQS) = 100 sq.cm, A(∆QRS) = 110 sq. cm, then find NR.


The ratio of the areas of two triangles with the common base is 4 : 3. Height of the larger triangle is 2 cm, then find the corresponding height of the smaller triangle.


In ∆ABC, B – D – C and BD = 7, BC = 20, then find the following ratio.

`(A(∆ABD))/(A(∆ABC))`


In fig., TP = 10 cm, PS = 6 cm. `"A(ΔRTP)"/"A(ΔRPS)"` = ?


Ratio of corresponding sides of two similar triangles is 4:7, then find the ratio of their areas = ?


In fig. BD = 8, BC = 12, B-D-C, then `"A(ΔABC)"/"A(ΔABD)"` = ?


In fig., AB ⊥ BC and DC ⊥ BC, AB = 6, DC = 4 then `("A"(Δ"ABC"))/("A"(Δ"BCD"))` = ?


Prove that, The areas of two triangles with the same height are in proportion to their corresponding bases. To prove this theorem start as follows:

  1. Draw two triangles, give the names of all points, and show heights.
  2. Write 'Given' and 'To prove' from the figure drawn.

If ΔABC ∼ ΔDEF, length of side AB is 9 cm and length of side DE is 12 cm, then find the ratio of their corresponding areas.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×