Advertisements
Advertisements
प्रश्न
रेखा y = mx + 1, वक्र y2 = 4x की एक स्पर्श रेखा है यदि m का मान है-
पर्याय
1
2
3
`1/2`
उत्तर
1
स्पष्टीकरण-
वक्र y2 = 4x
`therefore 2"y" "dy"/"dx" = 4 because "dy"/"dx" = 4/(2"y") = 2/"y"`
बिन्दु (x1, y1) पर `"dy"/"dx" = 2/"y"_1`
∴ स्पर्श रेखा का समीकरण
`"y" - "y"_1 = 2/"y"_1 (x - x_1)`
`=> "y" = 2/"y"_1 (x - x_1) + "y"_1`
`= 2/"y"_1 x + "y"_1 - (2x_1)/"y"_1` ...(1)
रेखा y = mx + 1 ...(2)
समीकरण (1) तथा (2) की तुलना करने पर,
`1 = (2/"y"_1)/"m" = ("y" - (2x_1)/"y"_1)/1`
`therefore "my"_1 = 2, 1 = "y"_1 - (2x_1)/"y"_1`
`=> 1 = ("y"_1^2 - 2x_1)/"y"_1`
`=> "y"_1 = "y"_1^2/2`
y1 = 0 या y1 = 2 परन्तु y1 ≠ 0 ∴ y1 = 2
y1 = 2 यदि समीकरण my1 = 2 रखने पर,
2m = 2
∴ m = 1
APPEARS IN
संबंधित प्रश्न
वक्र y = 3x4 - 4x के x = 4 पर स्पर्श रेखा की प्रवणता ज्ञात कीजिए।
वक्र `"y" = ("x" - 1)/("x" - 2), "x" ne 2` के x = 10 पर स्पर्श रेखा की प्रवणता ज्ञात कीजिए।
वक्र y = x3 - x + 1 की स्पर्श रेखा की प्रवणता उस बिंदु पर ज्ञात कीजिए जिसका x-निर्देशांक 2 है।
वक्र y = x3 - 3x + 2 की स्पर्श रेखा की प्रवणता उस बिंदु पर ज्ञात कीजिए जिसका x-निर्देशांक 3 है।
वक्र x `= "a" cos^3 theta, "y = a" sin^3 theta` के `theta = pi/4` पर अभिलंब की प्रवणता ज्ञात कीजिए।
वक्र y = (x - 2)2 पर एक बिंदु ज्ञात कीजिए जिस पर स्पर्श रेखा बिंदुओं (2, 0) और (4, 4) को मिलाने वाली रेखा के समांतर है।
प्रवणता -1 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र y `= 1/("x" - 1), "x" ne -1` को स्पर्श करती है।
प्रवणता 0 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र y `= 1/("x"^2 - 2"x" + 3)` को स्पर्श करती है।
वक्र `"x"^2/9 + "y"^2/16 = 1` पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ y-अक्ष के समांतर हैं।
सिद्ध कीजिए कि वक्र y = 7x3 + 11 के उन बिंदुओं पर स्पर्श रेखाएँ समांतर हैं जहाँ x = 2 तथा x = - 2 है।
वक्र y = x3 - 3x2 - 9x + 7 पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखायें x-अक्ष के समांतर हैं।
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x4 - 6x3 + 13x2 - 10x + 5 के (0, 5) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x4 - 6x3 + 13x2 - 10x + 5 के (1, 3) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x2 के (0, 0) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
x = cos t, y = sin t के t `= pi/4` पर
वक्र y = x2 - 2x + 7 की स्पर्श रेखा का समीकरण ज्ञात कीजिए, जो रेखा 5y - 15x = 13 पर लंब है।
वक्र y = x3 पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखा की प्रवणता बिंदु के y-निर्देशांक के बराबर है।
वक्र x2 + y2 - 2x - 3 = 0 के उन बिंदुओं पर स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जहाँ पर वे x-अक्ष के समांतर हैं।
वक्र y = x2 - 2x + 7 की स्पर्श रेखा का समीकरण ज्ञात कीजिए, जो रेखा 2x - y + 9 = 0 के समांतर है।
वक्र y = x3 + 2x + 6 के उन अभिलंबो के समीकरण ज्ञात कीजिए जो रेखा x + 14y + 4 = 0 के समान्तर हैं।
सिद्ध कीजिए कि वक्र x = y2 और xy = k एक-दूसरे को समकोण पर काटती हैं, यदि 8k2 = 1 है।
वक्र 2y + x2 = 3 के बिन्दु (1, 1) पर अभिलम्ब का समीकरण है:
वक्र 9y2 = x3 पर वे बिन्दु जहाँ पर वक्र का अभिलम्ब अक्षों से समान अन्तःखण्ड बनाता है-