Advertisements
Advertisements
प्रश्न
वक्र `"x"^2/9 + "y"^2/16 = 1` पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ y-अक्ष के समांतर हैं।
उत्तर
दिया है, वक्र का समीकरण
`"x"^2/9 + "y"^2/16 = 1`
दोनों पक्षों का x के सापेक्ष अवकलन करने पर,
`(2"x")/9 + (2"y")/16 "dy"/"dx" = 0` या `"dy"/"dx" = - (2"x")/9 xx 16/(2"y") = - 16/9 "x"/"y"`
जब स्पर्श रेखा y-अक्ष के समांतर हो तब
`- 1/("dy"/"dx") = 0 => (9"y")/(16"x") = 0 therefore "y" = 0`
y = 0, समीकरण `"x"^2/9 + "y"^2/16 = 1` में रखने पर,
`"x"^2/9 = 1 => "x"^2 = 9 therefore "x" = pm 3`
अत: y-अक्ष के समांतर स्पर्श रेखाएँ बिंदु (`pm` 3, 0) पर हैं।
APPEARS IN
संबंधित प्रश्न
वक्र y = x3 - 3x + 2 की स्पर्श रेखा की प्रवणता उस बिंदु पर ज्ञात कीजिए जिसका x-निर्देशांक 3 है।
वक्र x `= "a" cos^3 theta, "y = a" sin^3 theta` के `theta = pi/4` पर अभिलंब की प्रवणता ज्ञात कीजिए।
वक्र y = (x - 2)2 पर एक बिंदु ज्ञात कीजिए जिस पर स्पर्श रेखा बिंदुओं (2, 0) और (4, 4) को मिलाने वाली रेखा के समांतर है।
प्रवणता -1 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र y `= 1/("x" - 1), "x" ne -1` को स्पर्श करती है।
प्रवणता 0 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र y `= 1/("x"^2 - 2"x" + 3)` को स्पर्श करती है।
वक्र `"x"^2/9 + "y"^2/16 = 1` पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ x-अक्ष के समांतर हैं।
सिद्ध कीजिए कि वक्र y = 7x3 + 11 के उन बिंदुओं पर स्पर्श रेखाएँ समांतर हैं जहाँ x = 2 तथा x = - 2 है।
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x4 - 6x3 + 13x2 - 10x + 5 के (0, 5) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x4 - 6x3 + 13x2 - 10x + 5 के (1, 3) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x3 के (1, 1) पर
वक्र y = x3 पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखा की प्रवणता बिंदु के y-निर्देशांक के बराबर है।
वक्र y = 4x3 - 2x5, पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ मूलबिंदु से होकर जाती हैं।
वक्र x2 + y2 - 2x - 3 = 0 के उन बिंदुओं पर स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जहाँ पर वे x-अक्ष के समांतर हैं।
वक्र ay2 = x3 के बिंदु (am2, am3) पर अभिलंब का समीकरण ज्ञात कीजिए।
किस बिंदु पर y = x + 1, वक्र y2 = 4x की स्पर्श रेखा है?
वक्र y = x2 - 2x + 7 की स्पर्श रेखा का समीकरण ज्ञात कीजिए, जो रेखा 2x - y + 9 = 0 के समांतर है।
सिद्ध कीजिए कि वक्र x = a cos θ + a θ sin θ, y = a sin θ – a θ cos θ के किसी बिन्दु पर अभिलंब मूल बिन्दु से अचर दूरी पर है।
रेखा y = mx + 1, वक्र y2 = 4x की एक स्पर्श रेखा है यदि m का मान है-
वक्र 2y + x2 = 3 के बिन्दु (1, 1) पर अभिलम्ब का समीकरण है:
वक्र x2 = 4y का बिन्दु (1, 2) से होकर जाने वाला अभिलम्ब है-