Advertisements
Advertisements
प्रश्न
रस्त्याच्या दुतर्फा असलेल्या इमारतीच्या भिंती एकमेकींना समांतर आहेत. 5.8 मी लांबीच्या शिडीचे एक टोक रस्त्यावर ठेवले असता तिचे वरचे टोक पहिल्या इमारतीच्या 4 मीटर उंच असलेल्या खिडकीपर्यंत टेकते. त्याच ठिकाणी शिडी ठेवून रस्त्याच्या दुसऱ्या बाजूस वळविल्यास तिचे वरचे टोक दुसऱ्या इमारतीच्या 4.2 मीटर उंच असलेल्या खिडकीपर्यंत येते, तर रस्त्याची रुंदी काढा.
उत्तर
समजा, AC आणि CE ही 5.8 मी लांबीची शिडी आहे. A आणि E ह्या रस्त्याच्या दुतर्फा असलेल्या इमारतींच्या खिडक्या आहेत.
BD ही रस्त्याची रुंदी आहे.
AB = 4 मी व ED = 4.2 मी
ΔABC मध्ये, ∠B = 90° ......[पक्ष]
AC2 = AB2 + BC2 .....[पायथागोरसचे प्रमेय]
∴ 5.82 = 42 + BC2
∴ 5.82 - 42 = BC2
∴ (5.8 - 4) (5.8 + 4) = BC2
∴ 1.8 × 9.8 = BC2
∴ `(18 xx 98)/100` = BC2
∴ `(9 xx 2 xx 49 xx 2)/100 = "BC"^2`
∴ `(9 xx 4 xx 49)/100 = "BC"^2`
∴ BC = `(3 xx 2 xx 7)/10` ....[दोन्ही बाजूंचे वर्गमूळ घेऊन]
∴ BC = `42/10 = 4.2` सेमी ...(i)
ΔCDE मध्ये, ∠CDE = 90° ......[पक्ष]
∴ CE2 = CD2 + DE2 .....[पायथागोरसचे प्रमेय]
∴ 5.82 = CD2 + 4.22
∴ 5.82 - 4.22 = CD2
∴ (5.8 - 4.2) (5.8 + 4.2) = CD2
∴ 1.6 × 10 = CD2
∴ CD2 = 16
∴ CD = 4 मीटर .....(ii) [दोन्ही बाजूंचे वर्गमूळ घेऊन]
आता, BD = BC + CD ...[B-C-D]
= 4.2 + 4 .....[(i) व (ii) वरून]
= 8.2 मीटर
∴ रस्त्याची रुंदी 8.2 मीटर आहे.
APPEARS IN
संबंधित प्रश्न
बाजूंच्या लांबी a, b, c असलेल्या त्रिकोणामध्ये जर a2 + b2 = c2 असेल तर तो कोणत्या प्रकारचा त्रिकोण असेल?
काटकोन त्रिकोणामध्ये काटकोन करणाऱ्या बाजू 24 सेमी व 18 सेमी असतील तर त्याच्या कर्णाची लांबी ______ असेल.
एका काटकोन त्रिकोणामध्ये काटकोन करणाऱ्या बाजू 9 सेमी व 12 सेमी आहेत, तर त्या त्रिकोणाच्या कर्णाची लांबी काढा.
आयताचे क्षेत्रफळ 192 चौसेमी असून त्याची लांबी 16 सेमी आहे, तर आयताच्या कर्णाची लांबी काढा.
प्रणाली आणि प्रसाद एकाच ठिकाणावरून पूर्व आणि उत्तर दिशेला सारख्या वेगाने निघाले. दोन तासांनंतर त्यांच्यामधील अंतर `15sqrt2` किमी असेल तर त्यांचा ताशी वेग काढा.
समलंब चौकोन ABCD मध्ये, रेख AB || रेख DC रेख BD ⊥ रेख AD, रेख AC ⊥ रेख BC, जर AD = 15, BC = 15 आणि AB = 25 असेल तर A(`square`ABCD) किती?
एका काटकोन त्रिकोणामध्ये कर्णाची लांबी 25 सेमी व उंची 7 सेमी असेल, तर त्याच्या पायाची लांबी काढा.
सोबतच्या आकृतीत, ∆ABC मध्ये, AD ⊥ BC, तर AB2 + CD2 = BD2 + AC2 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: पायथागोरसच्या प्रमेयानुसार, काटकोन त्रिकोण ∆ADC मध्ये,
AC2 = AD2 + `square^2`
∴ AD2 = AC2 – CD2 …...........(i)
तसेच, पायथागोरसच्या प्रमेयानुसार, काटकोन त्रिकोण ∆ABD मध्ये,
AB2 = `square^2` + BD2
∴ AD2 = AB2 – BD2 …...… (ii)
∴ `square^2 - "BD"^2 = "AC"^2 - square^2` .....…….. (i) व (ii) वरून
∴ AB2 + CD2 = AC2 + BD2
सोबतच्या आकृतीत, ∠DFE = 90°, FG ⊥ ED, जर GD = 8, FG = 12, lej (1) EG, (2) FD आणि (3) EF काढा.
3 सेमी व 5 सेमी त्रिज्या आणि केंद्र O असलेली दोन एककेंद्री वर्तुळे काढा. मोठया वर्तुळावर कोणताही एक A बिंदू घ्या. बिंदू A मधून लहान वर्तुळाला स्पर्शिका काढा. त्या स्पर्शिकाखंडाची लांबी मोजा व लिहा. पायथागोरसच्या प्रमेयाचा उपयोग करून स्पर्शिकाखंडाची लांबी काढा.