मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Show that the points (0, –1), (8, 3), (6, 7) and (– 2, 3) are vertices of a rectangle. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Show that the points (0, –1), (8, 3), (6, 7) and (– 2, 3) are vertices of a rectangle.

बेरीज

उत्तर

Let the points be P(0, –1), Q(8, 3), R(6, 7), S(–2, 3)

Distance between two points= `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2`

∴ By distance formula,

d(P, Q) = `sqrt((8 - 0)^2 + [3 - (-1)]^2`

= `sqrt((8 - 0)^2 + (3 + 1)^2`

= `sqrt(8^2 + 4^2)`

= `sqrt(64 + 16)`

= `sqrt(80)`              ......(i)

d(Q, R) = `sqrt((6 - 8)^2 + (7 - 3)^2`

= `sqrt((-2)^2 + (4)^2`

= `sqrt(4 + 16)`

= `sqrt(20)`          ......(ii)

d(R, S) = `sqrt([(-2) - 6]^2 + (3 - 7)^2`

= `sqrt((-8)^2 + (-4)^2`

= `sqrt(64 + 16)`

=`sqrt(80)`            ......(iii)

d(P, S) = `sqrt([(-2) - 0]^2 + [3 - (-1)^2]`

= `sqrt((-2)^2+ (3+ 1)^2`

= `sqrt((-2)^2 + 4^2`

= `sqrt(4 + 16)`

= `sqrt(20)`           ......(iv)

In ▢PQRS,

∴ side PQ = side RS              .......[From (i) and (iii)]

side QR = side PS              ......[From (ii) and (iv)]

∴ ▢PQRS is a parallelogram            ......[A quadrilateral is a parallelogram, if both the pairs of its opposite sides are congruent]

d(P, R) = `sqrt((6 - 0)^2 + [7 - (-1)]^2`

= `sqrt((6 - 0)^2 + (7 + 1)^2`

= `sqrt(6^2 + 8^2)`

= `sqrt(36 + 64)`

= `sqrt(100)`

= 10                 ......(iv)

d(Q, S) = `sqrt([(-2) - 8]^2 + [3 - 3]^2`

= `sqrt((-10)^2 + (0)^2`

= `sqrt(100 + 0)`

= `sqrt(100)`

= 10                ......(vi)

In parallelogram PQRS,

PR = QS              .......[From (v) and (vi)]

∴ ▢PQRS is a rectangle.           .......[A parallelogram is a rectangle if its diagonals are equal]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Co-ordinate Geometry - Q.4

संबंधित प्रश्‍न

If the point A(0, 2) is equidistant from the points B(3, p) and C(p, 5), find p. Also, find the length of AB.


If the point (x, y) is equidistant from the points (a + b, b – a) and (a – b, a + b), prove that bx = ay


If P (2, – 1), Q(3, 4), R(–2, 3) and S(–3, –2) be four points in a plane, show that PQRS is a rhombus but not a square. Find the area of the rhombus


Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer:

(- 1, - 2), (1, 0), (- 1, 2), (- 3, 0)


Show that the points A (1, −2), B (3, 6), C (5, 10) and D (3, 2) are the vertices of a parallelogram.


Show that the quadrilateral whose vertices are (2, −1), (3, 4) (−2, 3) and (−3,−2) is a rhombus.


Show that the ▢PQRS formed by P(2, 1), Q(–1, 3), R(–5, –3) and S(–2, –5) is a rectangle.


Find the distance of the following point from the origin :

(6 , 8)


Find the distance between the following point :

(sin θ , cos θ) and (cos θ , - sin θ)


Find the distance between the following point :

(sec θ , tan θ) and (- tan θ , sec θ)


Find the distance of a point (13 , -9) from another point on the line y = 0 whose abscissa is 1.


Find the value of a if the distance between the points (5 , a) and (1 , 5) is 5 units .


Find the value of m if the distance between the points (m , -4) and (3 , 2) is 3`sqrt 5` units.


Prove that the following set of point is collinear :

(5 , 5),(3 , 4),(-7 , -1)


Prove that the following set of point is collinear :

(4, -5),(1 , 1),(-2 , 7)


Find the coordinate of O , the centre of a circle passing through P (3 , 0), Q (2 , `sqrt 5`) and R (`-2 sqrt 2` , -1). Also find its radius.


Find the distance between the origin and the point:
(-5, -12)


Show that the quadrilateral with vertices (3, 2), (0, 5), (- 3, 2) and (0, -1) is a square.


Seg OA is the radius of a circle with centre O. The coordinates of point A is (0, 2) then decide whether the point B(1, 2) is on the circle?


Points A(4, 3), B(6, 4), C(5, –6) and D(–3, 5) are the vertices of a parallelogram.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×