मराठी

Show That: the Ratio of the Areas of Two Triangles of the Same Height is Equal to the Ratio of Their Bases. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that:

The ratio of the areas of two triangles of the same height is equal to the ratio of their bases.

बेरीज

उत्तर

Consider  the following figure:

Here AP ⊥ BC

Since Ar. ( ΔABD ) = `1/2` BD x AP

And, Ar. ( ΔADC ) =`1/2` DC x AP

`["Area"( ΔABD)]/["Area"(Δ ADC )] = [1/2 BD xx AP]/[1/2 DC xx AP]= (BD)/(DC)`

Hence proved.

shaalaa.com
Figures Between the Same Parallels
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Area Theorems [Proof and Use] - Exercise 16 (B) [पृष्ठ २०१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 16 Area Theorems [Proof and Use]
Exercise 16 (B) | Q 1.2 | पृष्ठ २०१

संबंधित प्रश्‍न

In the given figure, AD // BE // CF.
Prove that area (ΔAEC) = area (ΔDBF)


In the given figure, D is mid-point of side AB of ΔABC and BDEC is a parallelogram.

Prove that: Area of ABC = Area of // gm BDEC.


In parallelogram ABCD, P is a point on side AB and Q is a point on side BC.
Prove that:
(i) ΔCPD and ΔAQD are equal in the area.
(ii) Area (ΔAQD) = Area (ΔAPD) + Area (ΔCPB)


In the following figure, DE is parallel to BC.
Show that: 
(i) Area ( ΔADC ) = Area( ΔAEB ).
(ii) Area ( ΔBOD ) = Area( ΔCOE ).


ABCD is a parallelogram in which BC is produced to E such that CE = BC and AE intersects CD at F.

If ar.(∆DFB) = 30 cm2; find the area of parallelogram.


ABCD is a parallelogram. P and Q are the mid-points of sides AB and AD respectively.
Prove that area of triangle APQ = `1/8` of the area of parallelogram ABCD.


In the given figure, the diagonals AC and BD intersect at point O. If OB = OD and AB//DC,
show that:
(i) Area (Δ DOC) = Area (Δ AOB).
(ii) Area (Δ DCB) = Area (Δ ACB).
(iii) ABCD is a parallelogram.


In the following figure, BD is parallel to CA, E is mid-point of CA and BD = `1/2`CA
Prove that: ar. ( ΔABC ) = 2 x ar.( ΔDBC )


In parallelogram ABCD, E is a point in AB and DE meets diagonal AC at point F. If DF: FE = 5:3 and area of  ΔADF is 60 cm2; find
(i) area of ΔADE.
(ii) if AE: EB = 4:5, find the area of  ΔADB.
(iii) also, find the area of parallelogram ABCD.


In parallelogram ABCD, P is the mid-point of AB. CP and BD intersect each other at point O. If the area of ΔPOB = 40 cm2, and OP: OC = 1:2, find:
(i) Areas of ΔBOC and ΔPBC
(ii) Areas of ΔABC and parallelogram ABCD.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×