मराठी

Abcd is a Parallelogram in Which Bc is Produced to E Such that Ce = Bc and Ae Intersects Cd at F. If Ar.(∆Dfb) = 30 Cm2; Find the Area of Parallelogram - Mathematics

Advertisements
Advertisements

प्रश्न

ABCD is a parallelogram in which BC is produced to E such that CE = BC and AE intersects CD at F.

If ar.(∆DFB) = 30 cm2; find the area of parallelogram.

बेरीज

उत्तर


BC = CE                     .....( given )
Also, in parallelogram ABCD, BC = AD
⇒ AD = CE
Now, in ΔADF and ΔECF, We have
AD = CE
∠ADF = ∠ECF           .....( Alternate angles )
∠DAF = ∠CEF           ......( Alternate angles )
∴ ΔADF ≅ ΔECF       ......( ASA Criterion )
⇒ Area( ΔADF ) = Area( ΔECF )     ....(1)

Also, in ΔFBE, FC is the median     ....( Since BC = CE )
⇒ Area( ΔBCF ) = Area( ΔECF )      .....(2)

From (1) and (2)
Area( ΔADF ) = Area( ΔBCF )         ......(3)
Again, ΔADF and ΔBDF are on the base DF and between parallels DF and AB.
⇒ Area( ΔBDF ) = Area( ΔADF )    ........(4)

From (3) and (4),
Area( ΔBDF ) = Area( ΔBCF ) = 30 cm2
Area( ΔBCD ) = Area( ΔBDF ) + Area( ΔBCF ) = 30 + 30 = 60 cm2
Hence, Area of parallelogram ABCD = 2 x Area( ΔBCD ) = 2 x 60 = 120cm2.

shaalaa.com
Figures Between the Same Parallels
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Area Theorems [Proof and Use] - Exercise 16 (B) [पृष्ठ २०१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 16 Area Theorems [Proof and Use]
Exercise 16 (B) | Q 7 | पृष्ठ २०१

संबंधित प्रश्‍न

The given figure shows the parallelograms ABCD and APQR.
Show that these parallelograms are equal in the area.
[ Join B and R ]


In the given figure, diagonals PR and QS of the parallelogram PQRS intersect at point O and LM is parallel to PS. Show that:

(i) 2 Area (POS) = Area (// gm PMLS)
(ii) Area (POS) + Area (QOR) = Area (// gm PQRS)
(iii) Area (POS) + Area (QOR) = Area (POQ) + Area (SOR).


In the following figure, CE is drawn parallel to diagonals DB of the quadrilateral ABCD which meets AB produced at point E.
Prove that ΔADE and quadrilateral ABCD are equal in area.


In the figure given alongside, squares ABDE and AFGC are drawn on the side AB and the hypotenuse AC of the right triangle ABC.

If BH is perpendicular to FG

prove that:

  1. ΔEAC ≅ ΔBAF
  2. Area of the square ABDE
  3. Area of the rectangle ARHF.

ABCD is a parallelogram a line through A cuts DC at point P and BC produced at Q. Prove that triangle BCP is equal in area to triangle DPQ.


Show that:

A diagonal divides a parallelogram into two triangles of equal area.


ABCD is a parallelogram. P and Q are the mid-points of sides AB and AD respectively.
Prove that area of triangle APQ = `1/8` of the area of parallelogram ABCD.


In the given figure, the diagonals AC and BD intersect at point O. If OB = OD and AB//DC,
show that:
(i) Area (Δ DOC) = Area (Δ AOB).
(ii) Area (Δ DCB) = Area (Δ ACB).
(iii) ABCD is a parallelogram.


In the following figure, BD is parallel to CA, E is mid-point of CA and BD = `1/2`CA
Prove that: ar. ( ΔABC ) = 2 x ar.( ΔDBC )


In ΔABC, E and F are mid-points of sides AB and AC respectively. If BF and CE intersect each other at point O,
prove that the ΔOBC and quadrilateral AEOF are equal in area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×