हिंदी

Abcd is a Parallelogram in Which Bc is Produced to E Such that Ce = Bc and Ae Intersects Cd at F. If Ar.(∆Dfb) = 30 Cm2; Find the Area of Parallelogram - Mathematics

Advertisements
Advertisements

प्रश्न

ABCD is a parallelogram in which BC is produced to E such that CE = BC and AE intersects CD at F.

If ar.(∆DFB) = 30 cm2; find the area of parallelogram.

योग

उत्तर


BC = CE                     .....( given )
Also, in parallelogram ABCD, BC = AD
⇒ AD = CE
Now, in ΔADF and ΔECF, We have
AD = CE
∠ADF = ∠ECF           .....( Alternate angles )
∠DAF = ∠CEF           ......( Alternate angles )
∴ ΔADF ≅ ΔECF       ......( ASA Criterion )
⇒ Area( ΔADF ) = Area( ΔECF )     ....(1)

Also, in ΔFBE, FC is the median     ....( Since BC = CE )
⇒ Area( ΔBCF ) = Area( ΔECF )      .....(2)

From (1) and (2)
Area( ΔADF ) = Area( ΔBCF )         ......(3)
Again, ΔADF and ΔBDF are on the base DF and between parallels DF and AB.
⇒ Area( ΔBDF ) = Area( ΔADF )    ........(4)

From (3) and (4),
Area( ΔBDF ) = Area( ΔBCF ) = 30 cm2
Area( ΔBCD ) = Area( ΔBDF ) + Area( ΔBCF ) = 30 + 30 = 60 cm2
Hence, Area of parallelogram ABCD = 2 x Area( ΔBCD ) = 2 x 60 = 120cm2.

shaalaa.com
Figures Between the Same Parallels
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Area Theorems [Proof and Use] - Exercise 16 (B) [पृष्ठ २०१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 16 Area Theorems [Proof and Use]
Exercise 16 (B) | Q 7 | पृष्ठ २०१

संबंधित प्रश्न

The given figure shows the parallelograms ABCD and APQR.
Show that these parallelograms are equal in the area.
[ Join B and R ]


ABCD is a trapezium with AB // DC. A line parallel to AC intersects AB at point M and BC at point N.
Prove that: area of Δ ADM = area of Δ ACN.


ABCD and BCFE are parallelograms. If area of triangle EBC = 480 cm2; AB = 30 cm and BC = 40 cm.

Calculate : 
(i) Area of parallelogram ABCD;
(ii) Area of the parallelogram BCFE;
(iii) Length of altitude from A on CD;
(iv) Area of triangle ECF.


In parallelogram ABCD, P is a point on side AB and Q is a point on side BC.
Prove that:
(i) ΔCPD and ΔAQD are equal in the area.
(ii) Area (ΔAQD) = Area (ΔAPD) + Area (ΔCPB)


ABCD is a parallelogram a line through A cuts DC at point P and BC produced at Q. Prove that triangle BCP is equal in area to triangle DPQ.


ABCD is a trapezium with AB parallel to DC. A line parallel to AC intersects AB at X and BC at Y.
Prove that the area of ∆ADX = area of ∆ACY.


In the given figure, the diagonals AC and BD intersect at point O. If OB = OD and AB//DC,
show that:
(i) Area (Δ DOC) = Area (Δ AOB).
(ii) Area (Δ DCB) = Area (Δ ACB).
(iii) ABCD is a parallelogram.


E, F, G, and H are the midpoints of the sides of a parallelogram ABCD.
Show that the area of quadrilateral EFGH is half of the area of parallelogram ABCD.


The given figure shows a parallelogram ABCD with area 324 sq. cm. P is a point in AB such that AP: PB = 1:2
Find The area of Δ APD.


In parallelogram ABCD, P is the mid-point of AB. CP and BD intersect each other at point O. If the area of ΔPOB = 40 cm2, and OP: OC = 1:2, find:
(i) Areas of ΔBOC and ΔPBC
(ii) Areas of ΔABC and parallelogram ABCD.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×