हिंदी

The Given Figure Shows Parallelograms Abcd and Apqr. Show that These Parallelograms Are Equal in Area. Join B and R - Mathematics

Advertisements
Advertisements

प्रश्न

The given figure shows the parallelograms ABCD and APQR.
Show that these parallelograms are equal in the area.
[ Join B and R ]

योग

उत्तर

Join B and R and P and R.
We know that the area of the parallelogram is equal to twice the area of the triangle if the triangle and the parallelogram are on the same base and between the parallels.
Consider ABCD parallelogram:

Since the parallelogram ABCD and the triangle ABR lie on AB and between the parallels AB and DC, we have
Area(`square`ABCD ) = 2 x Area( ΔABR )        ....(1)

We know that the area of triangles with the same base and between the same parallel lines are equal.
Since the triangles ABR and APR lie on the same base AR and between the parallels AR and QP, we have,
Area ( ΔABR ) = Area ( ΔAPR )               ....(2)

From equations (1) and (2), we have,
Area(`square`ABCD) = 2 x Area( ΔAPR )        .....(3)

Also, the triangle APR and the parallelograms, AR and QR, lie on the same base AR and between the parallels, AR and QP,
Area( ΔAPR ) = `1/2` x Area(`square`ARQP )    ....(4)

Using (4) in equation (3), We have,
Area(`square`ABCD ) = 2 x `1/2 xx "Area"( square`ARQP )

Area( `square"ABCD" ) = "Area"( square` ARQP)
Hence Proved.

shaalaa.com
Figures Between the Same Parallels
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Area Theorems [Proof and Use] - Exercise 16 (A) [पृष्ठ १९८]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 16 Area Theorems [Proof and Use]
Exercise 16 (A) | Q 18 | पृष्ठ १९८

संबंधित प्रश्न

In the given figure, if the area of triangle ADE is 60 cm2, state, given reason, the area of :
(i) Parallelogram ABED;
(ii) Rectangle ABCF;
(iii) Triangle ABE.


In the given figure, ABCD is a parallelogram; BC is produced to point X.
Prove that: area ( Δ ABX ) = area (`square`ACXD )


ABCD and BCFE are parallelograms. If area of triangle EBC = 480 cm2; AB = 30 cm and BC = 40 cm.

Calculate : 
(i) Area of parallelogram ABCD;
(ii) Area of the parallelogram BCFE;
(iii) Length of altitude from A on CD;
(iv) Area of triangle ECF.


In the following figure, DE is parallel to BC.
Show that: 
(i) Area ( ΔADC ) = Area( ΔAEB ).
(ii) Area ( ΔBOD ) = Area( ΔCOE ).


In the figure given alongside, squares ABDE and AFGC are drawn on the side AB and the hypotenuse AC of the right triangle ABC.

If BH is perpendicular to FG

prove that:

  1. ΔEAC ≅ ΔBAF
  2. Area of the square ABDE
  3. Area of the rectangle ARHF.

ABCD is a parallelogram a line through A cuts DC at point P and BC produced at Q. Prove that triangle BCP is equal in area to triangle DPQ.


Show that:

A diagonal divides a parallelogram into two triangles of equal area.


ABCD is a parallelogram. P and Q are the mid-points of sides AB and AD respectively.
Prove that area of triangle APQ = `1/8` of the area of parallelogram ABCD.


In parallelogram ABCD, E is a point in AB and DE meets diagonal AC at point F. If DF: FE = 5:3 and area of  ΔADF is 60 cm2; find
(i) area of ΔADE.
(ii) if AE: EB = 4:5, find the area of  ΔADB.
(iii) also, find the area of parallelogram ABCD.


In ΔABC, E and F are mid-points of sides AB and AC respectively. If BF and CE intersect each other at point O,
prove that the ΔOBC and quadrilateral AEOF are equal in area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×