मराठी

In the Given Figure, Ad // Be // Cf. Prove that Area (δAec) = Area (δDbf) - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, AD // BE // CF.
Prove that area (ΔAEC) = area (ΔDBF)

बेरीज

उत्तर

We know that the area of triangles on the same base and between the same parallel lines are equal.

Consider ABED quadrilateral; AD || BE.
With the common base, BE and between AD and BE parallel lines, we have
Area of ΔABE = Area of ΔBDE

Similarly, in BEFC quadrilateral, BE || CF
With common base BC and between BE and CF parallel lines, we have
Area of ΔBEC = Area of ΔBEF

Adding both equations, we have
Area of ΔABE + Area of ΔBEC = Area of ΔBEF + Area of ΔBDE
⇒ Area of AEC = Area of DBF

Hence Proved.

shaalaa.com
Figures Between the Same Parallels
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Area Theorems [Proof and Use] - Exercise 16 (A) [पृष्ठ १९७]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 16 Area Theorems [Proof and Use]
Exercise 16 (A) | Q 16 | पृष्ठ १९७

संबंधित प्रश्‍न

The given figure shows the parallelograms ABCD and APQR.
Show that these parallelograms are equal in the area.
[ Join B and R ]


ABCD is a trapezium with AB // DC. A line parallel to AC intersects AB at point M and BC at point N.
Prove that: area of Δ ADM = area of Δ ACN.


In the given figure, D is mid-point of side AB of ΔABC and BDEC is a parallelogram.

Prove that: Area of ABC = Area of // gm BDEC.


ABCD and BCFE are parallelograms. If area of triangle EBC = 480 cm2; AB = 30 cm and BC = 40 cm.

Calculate : 
(i) Area of parallelogram ABCD;
(ii) Area of the parallelogram BCFE;
(iii) Length of altitude from A on CD;
(iv) Area of triangle ECF.


In the given figure, M and N are the mid-points of the sides DC and AB respectively of the parallelogram ABCD.

If the area of parallelogram ABCD is 48 cm2;
(i) State the area of the triangle BEC.
(ii) Name the parallelogram which is equal in area to the triangle BEC.


ABCD is a parallelogram in which BC is produced to E such that CE = BC and AE intersects CD at F.

If ar.(∆DFB) = 30 cm2; find the area of parallelogram.


ABCD is a parallelogram. P and Q are the mid-points of sides AB and AD respectively.
Prove that area of triangle APQ = `1/8` of the area of parallelogram ABCD.


E, F, G, and H are the midpoints of the sides of a parallelogram ABCD.
Show that the area of quadrilateral EFGH is half of the area of parallelogram ABCD.


The given figure shows a parallelogram ABCD with area 324 sq. cm. P is a point in AB such that AP: PB = 1:2
Find The area of Δ APD.


Show that:

The ratio of the areas of two triangles of the same height is equal to the ratio of their bases.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×