मराठी

Abcd and Bcfe Are Parallelograms. If Area of Triangle Ebc = 480 Cm2; Ab = 30 Cm and Bc = 40 Cm.Calculate : (I) Area of Parallelogram Abcd; (Ii) Area of the Parallelogram Bcfe; - Mathematics

Advertisements
Advertisements

प्रश्न

ABCD and BCFE are parallelograms. If area of triangle EBC = 480 cm2; AB = 30 cm and BC = 40 cm.

Calculate : 
(i) Area of parallelogram ABCD;
(ii) Area of the parallelogram BCFE;
(iii) Length of altitude from A on CD;
(iv) Area of triangle ECF.

बेरीज

उत्तर

(i) Since ΔEBC and parallelogram ABCD are on the same base BC and between the same parallels i.e. BC // AD.

∴ A( ΔEBC ) = `1/2` x A( parallelogram ABCD )

parallelogram ABCD = 2 x A( ΔEBC )
                                  = 2 x 480 cm2
                                  = 960 cm2
(ii) Parallelograms on same base and between same parallels are equal in area.
Area of BCFE = Area of ABCD = 960 cm2

(iii) Area of triangle ACD=480 = `1/2` x 30 x Altitude
Altitude = 32 cm

(iv) The area of a triangle is half that of a parallelogram on the same base and between the same parallels.
Therefore,
Area( ΔECF ) = `1/2` Area(`square`CBEF )
Similarly, Area( ΔBCE ) = `1/2`Area(`square`CBEF )

⇒ Area( ΔECF ) = Area( ΔBCE ) = 480 cm2.

shaalaa.com
Figures Between the Same Parallels
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Area Theorems [Proof and Use] - Exercise 16 (A) [पृष्ठ १९७]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 16 Area Theorems [Proof and Use]
Exercise 16 (A) | Q 12 | पृष्ठ १९७

संबंधित प्रश्‍न

In the given figure, M and N are the mid-points of the sides DC and AB respectively of the parallelogram ABCD.

If the area of parallelogram ABCD is 48 cm2;
(i) State the area of the triangle BEC.
(ii) Name the parallelogram which is equal in area to the triangle BEC.


In the figure given alongside, squares ABDE and AFGC are drawn on the side AB and the hypotenuse AC of the right triangle ABC.

If BH is perpendicular to FG

prove that:

  1. ΔEAC ≅ ΔBAF
  2. Area of the square ABDE
  3. Area of the rectangle ARHF.

In the given figure, AP is parallel to BC, BP is parallel to CQ.
Prove that the area of triangles ABC and BQP are equal.


ABCD is a parallelogram a line through A cuts DC at point P and BC produced at Q. Prove that triangle BCP is equal in area to triangle DPQ.


ABCD is a parallelogram in which BC is produced to E such that CE = BC and AE intersects CD at F.

If ar.(∆DFB) = 30 cm2; find the area of parallelogram.


ABCD is a parallelogram. P and Q are the mid-points of sides AB and AD respectively.
Prove that area of triangle APQ = `1/8` of the area of parallelogram ABCD.


ABCD is a trapezium with AB parallel to DC. A line parallel to AC intersects AB at X and BC at Y.
Prove that the area of ∆ADX = area of ∆ACY.


In parallelogram ABCD, E is a point in AB and DE meets diagonal AC at point F. If DF: FE = 5:3 and area of  ΔADF is 60 cm2; find
(i) area of ΔADE.
(ii) if AE: EB = 4:5, find the area of  ΔADB.
(iii) also, find the area of parallelogram ABCD.


In ΔABC, E and F are mid-points of sides AB and AC respectively. If BF and CE intersect each other at point O,
prove that the ΔOBC and quadrilateral AEOF are equal in area.


Show that:

The ratio of the areas of two triangles of the same height is equal to the ratio of their bases.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×