मराठी

Abcd is a Trapezium with Ab Parallel to Dc. a Line Parallel to Ac Intersects Ab at X and Bc at Y. Prove that Area of ∆Adx = Area of ∆Acy. - Mathematics

Advertisements
Advertisements

प्रश्न

ABCD is a trapezium with AB parallel to DC. A line parallel to AC intersects AB at X and BC at Y.
Prove that the area of ∆ADX = area of ∆ACY.

बेरीज

उत्तर

Join CX, DX and AY.
Now, triangles ADX and ACX are on the same base AX and between the parallels AB and DC.
∴ A( ΔADX ) = A( ΔACX )                            ….(i)

Also, triangles ACX and ACY are on the same base AC and between the parallels AC and XY.
∴ A( ΔACX ) = A( ΔACY )                            ….(ii)

From (i) and (ii), we get
A( ΔADX ) = A( ΔACY )



shaalaa.com
Figures Between the Same Parallels
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Area Theorems [Proof and Use] - Exercise 16 (C) [पृष्ठ २०२]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 16 Area Theorems [Proof and Use]
Exercise 16 (C) | Q 11 | पृष्ठ २०२

संबंधित प्रश्‍न

In the given figure, ABCD is a parallelogram; BC is produced to point X.
Prove that: area ( Δ ABX ) = area (`square`ACXD )


In the following, AC // PS // QR and PQ // DB // SR.

Prove that: Area of quadrilateral PQRS = 2 x Area of the quad. ABCD.


In the given figure, diagonals PR and QS of the parallelogram PQRS intersect at point O and LM is parallel to PS. Show that:

(i) 2 Area (POS) = Area (// gm PMLS)
(ii) Area (POS) + Area (QOR) = Area (// gm PQRS)
(iii) Area (POS) + Area (QOR) = Area (POQ) + Area (SOR).


In parallelogram ABCD, P is a point on side AB and Q is a point on side BC.
Prove that:
(i) ΔCPD and ΔAQD are equal in the area.
(ii) Area (ΔAQD) = Area (ΔAPD) + Area (ΔCPB)


In the given figure, M and N are the mid-points of the sides DC and AB respectively of the parallelogram ABCD.

If the area of parallelogram ABCD is 48 cm2;
(i) State the area of the triangle BEC.
(ii) Name the parallelogram which is equal in area to the triangle BEC.


ABCD is a parallelogram in which BC is produced to E such that CE = BC and AE intersects CD at F.

If ar.(∆DFB) = 30 cm2; find the area of parallelogram.


E, F, G, and H are the midpoints of the sides of a parallelogram ABCD.
Show that the area of quadrilateral EFGH is half of the area of parallelogram ABCD.


The given figure shows a parallelogram ABCD with area 324 sq. cm. P is a point in AB such that AP: PB = 1:2
Find The area of Δ APD.


In parallelogram ABCD, P is the mid-point of AB. CP and BD intersect each other at point O. If the area of ΔPOB = 40 cm2, and OP: OC = 1:2, find:
(i) Areas of ΔBOC and ΔPBC
(ii) Areas of ΔABC and parallelogram ABCD.


Show that:
The ratio of the areas of two triangles on the same base is equal to the ratio of their heights.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×