मराठी

सिद्ध कीजिए कि एक त्रिभुज की किन्हीं दो भुजाओं का योग तीसरी भुजा की संगत माध्यिका के दोगुने से बड़ा होता हैं। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

सिद्ध कीजिए कि एक त्रिभुज की किन्हीं दो भुजाओं का योग तीसरी भुजा की संगत माध्यिका के दोगुने से बड़ा होता हैं।

बेरीज

उत्तर

दिया गया है - त्रिभुज ABC में माध्यिका AD के साथ,

उपपत्ति के लिए - AB + AC > 2AD

AB + BC > 2AD 

BC + AC > 2AD

AD को E में इस प्रकार बढ़ाइए कि DE = AD और EC को मिलाइए।

उपपत्ति - त्रिभुज ADB और त्रिभुज EDC में,

AD = ED   ...[रचना द्वारा] 

∠1 = ∠2   ...[शीर्षाभिमुख कोण बराबर होते हैं।]

DB = DC  ...[दिया गया है।]

इसलिए, सर्वांगसमता की SAS कसौटी से,

ΔADB ≅ ΔEDC

AB = EC   ...[CPCT]

और ∠3 = ∠4   ...[CPCT]

पुनः, त्रिभुज AEC में,

AC + CE > AE  ...[त्रिभुज की किन्हीं दो भुजाओं की लंबाई का योग तीसरी भुजा से अधिक होना चाहिए]

AC + CE > AD + DE

AC + CE > AD + AD  ...[AD = DE]

AC + CE > 2AD

AC + AB > 2AD   ...[क्योंकि AB = CE]

अतः सिद्ध हुआ।

इसी प्रकार, AB + BC > 2AD और BC + AC > 2AD।

shaalaa.com
त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: त्रिभुज - प्रश्नावली 7.4 [पृष्ठ ७१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
पाठ 7 त्रिभुज
प्रश्नावली 7.4 | Q 10. | पृष्ठ ७१

संबंधित प्रश्‍न

l और m दो समांतर रेखाएँ हैं जिन्हें समांतर रेखाओं p और q का एक अन्य युग्म प्रतिच्छेदित करता है (देखिए आकृति) दर्शाइए कि: △ABC ≌ △CDA है।


रेखा l कोण A को समद्विभाजित करती है और B रेखा l पर स्थित कोई बिंदु है। BP और BQ कोण A की भुजाओं पर B से डाले गए लंब हैं। (देखिए आकृति) दर्शाइए कि:

  1. △APB ≌ △AQB
  2. BP = BQ है, अर्थात् बिंदु B कोण की भुजाओं से समदूरस्थ है।


आकृति में, AC = AE, AB = AD और ∠BAD = ∠EAC है। दर्शाइए कि BC = DE है।


BE और CF एक त्रिभुज ABC के दो बराबर शीर्षलम्ब हैं। RHS सर्वांगसमता नियम का प्रयोग करके सिद्ध कीजिए कि ΔABC एक समद्विबाहु त्रिभुज है।

ABC एक समद्विबाहु त्रिभुज है जिसमें AB = AC है। AP ⊥ BC खींच कर दर्शाइए कि ∠B = ∠C है।


त्रिभुजों ABC और PQR में, ∠A = ∠Q और ∠B = ∠R है। ∆PQR की कौन सी भुजा ∆ABC की भुजा AB के बराबर होनी चाहिए कि दोनों त्रिभुज सर्वांगसम हों? अपने उत्तर के लिए कारण दीजिए।


M किसी त्रिभुज ABC की भुजा BC पर स्थित एक बिंदु ऐसा है कि AM कोण BAC का समद्विभाजक है। क्या यह कहना सत्य है कि त्रिभुज का परिमाप 2 AM से अधिक है? अपने उत्तर के लिए कारण दीजिए।


क्या भुजाओं की लंबाइयाँ 9 cm, 7 cm और 17 cm लेकर किसी त्रिभुज की रचना की जा सकती है? अपने उत्तर के लिए कारण दीजिए।


निम्नलिखित आकृति में, AD कोण BAC का समद्विभाजक है। सिद्ध कीजिए कि AB > BD है।


दर्शाइए कि एक चतुर्भुज ABCD में, AB + BC + CD + DA > AC + BD होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×