Advertisements
Advertisements
प्रश्न
Simplify and express the result in power notation with positive exponent.
2−3 × (−7)−3
सोपे रूप द्या
उत्तर
2−3 × (−7)−3
= `1/2^3 xx 1/(-7)^3`
= `1/[2xx(-7)]^3` ...[∵ am . bm = (ab)m]
= `1/(-14)^3`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
संबंधित प्रश्न
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
\[\left( \frac{2}{3} \right)^{- 2}\]
Simplify:
\[\left( 4^{- 1} \times 3^{- 1} \right)^2\]
Write the following in exponential form:
\[\left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1}\]
Simplify:
\[\left( 4^{- 1} - 5^{- 1} \right) \div 3^{- 1}\]
Express the following rational numbers with a negative exponent:
\[\left\{ \left( \frac{3}{2} \right)^4 \right\}^{- 3}\]
\[\left( \frac{- 1}{2} \right)^5 \times \left( \frac{- 1}{2} \right)^3\] is equal to
\[\left( \frac{2}{3} \right)^{- 5} \times \left( \frac{5}{7} \right)^{- 5}\] is equal to
Find the multiplicative inverse of the following.
2– 4
Expand the following numbers using exponents.
1025.63
The multiplicative inverse of 1010 is ______.