Advertisements
Advertisements
प्रश्न
समुच्चय A = {1, 2, 3}, के लिए एक संबंध निचे लिखे अनुसार परिभाषित कीजिए:
R = {(1, 1), (2, 2), (3, 3), (1, 3)}
उन क्रमित युग्मों को लिखिए जिनको R में जोड़ने से वह न्यूनतम (छोटे से छोटा) तुल्यता संबंध बन जाए।
उत्तर
(3, 1) एक अकेला क्रमित युग्म है जिसको R में जोड़ने से वह छोटे से छोटा तुल्यता संबंध बन जाता है।
APPEARS IN
संबंधित प्रश्न
यदि f = {(5, 2), (6, 3)} तथा g = {(2, 5), (3, 6)}, तो f तथा g के परिसर लिखिए।
यदि A = {1, 2, 3} तथा f, g, A × A के उप-समुच्चय के संग निम्नलिखित प्रकार सूचित संबंध हैं
f = {(1, 3), (2, 3), (3, 2)}
g = {(1, 2), (1, 3), (3, 1)}
f तथा g में से कौन फलन है और क्यों?
यदि A = {a, b, c, d} तथा f = {a, b), (b, d), (c, a), (d, c)} तो सिद्ध कीजिए कि f एकैकी है तथा A से A पर आच्छादि है। f –1 भी ज्ञात कीजिए।
मान लीजिए कि f(x) = |x| + x तथा g(x) = x – x ∀ x ∈ R द्वारा परिभाषित f, g: R → R दो फलन हैं, तो f o g तथा g o f ज्ञात कीजिए।
मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:
a, b ∈ Q के लिए a * b = `"ab"/4`
मान लीजिए कि N प्राकृत संख्याओं के समुच्चय है तथा f : N → N, f (n) = 2n + 3 ∀ n ∈ N द्वारा परिभाषित एक फलन है, तो f
मान लीजिए कि f : R → R, f (x) = sin x तथा g : R → R g (x) = x2 द्वारा परिभषित हैं, तो f o g
अवयवों वाले समुच्चय A पर विचार कीजिए। A से स्वयं A पर एकैकी आच्छादक फलनों की कुल संख्या ______ है।
मान लीजिए कि A = {a, b, c} तथा A में परिभाषित संबंध R निम्नलिखित है:
R = {(a, a), (b, c), (a, b)}. तो उन क्रमित युग्मों की, कम से कम, संख्या लिखिए, जिनको R में जोड़ने से R स्वतुल्य तथा संक्रामक बन जाता है।
मान लीजिए कि f: R → R फलन f(x) = 2x – 3 ∀ x ∈ R द्वारा परिभाषित है। f–1 लिखिए।
क्या क्रमित युग्मों का निम्लिखित समुच्चय, फलन हैं? यदि ऐसा है, तो जाँच कीजिए कि प्रतिचित्रण एकैक अथवा आच्छादि हैं कि नहीं हैं।
{(x, y): x एक व्यक्ति है, y माँ है x की}
यदि प्रतिचित्रण f तथा g क्रमश: f = {(1, 2), (3, 5), (4, 1)} तथा g = {(2, 3), (5, 1), (1, 3)} द्वारा दत्त हैं, तो f o g लिखिए।
मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।
k = {(1,4), (2, 5)}
मान लीजिए n एक निश्चित (स्थिर) धन पूर्णांक है। Z में एक संबंध R निम्लिखित प्रकार से परिभाषित कीजिए : ∀ a, b ∈ Z, aRb यदि और केवल यदि a - b, भाज्य है n से। सिद्ध किजिए कि R एक तुल्यता संबंध है।
यदि A = {1, 2, 3, 4}, तो A में निम्लिखित गुण वाले संबंध को परिभाषित कीजिए:
स्वतुल्य तथा संक्रामक हों किंतु सममित नहीं हों।
यदि A = {1, 2, 3, 4}, तो A में निम्लिखित गुण वाले संबंध को परिभाषित कीजिए:
सममित हों परन्तु न तो स्वतुल्य हों और न संक्रामक हों।
एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -
एकैकी नहीं है किंतु आच्छादक है।
मान लीजिए कि A = R – {3}, B = R – {1}, मान लीजिए कि f : A → B, f (x) = `(x - 2) /(x - 3)` ∀ x ∈ A द्वारा परिभाषित है, तो सिद्ध कीजिए कि f एकैकी आच्छादी है।
मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलन एकैकी, आच्छादक या एकैकी आच्छादी हैं:
f(x) = `x/2`
मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलन एकैकी, आच्छादक या एकैकी आच्छादी हैं:
h(x) = x|x|
निम्नलिखित में से N में एक संबंध परिभाषित करते है:
x y किसी पूर्णाक का वर्ग है, x, y ∈ N
निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।
मान लीजिए कि हम R में एक संबंध R इस प्रकार परिभाषित करें aRb यदि a ≥ b, तो R _________ है।
यदि समुच्चय A में 5 अवयव हैं तथा समुच्चय B में 6 अवयव हैं, तो A से B में एकैकी तथा आच्छादक प्रतिचित्रणों की संख्या ______ है।
मान लीजिए f: A → B तथा g: B → C एकैकी आच्छादी फलन हैं, तो (g o f)-1 ______ है।
मान लीजिए कि N में एक संबंध R, aRb यदि 2a + 3b = 30 द्वारा परिभाषित है, तो R = ______।
मान लीजिए कि f = {(1, 2), (3, 5), (4, 1) तथा g = {(2, 3), (5, 1), (1, 3)}। तो g o f = ______ तथा f o g = ______।
प्रत्येक संबंध जो सममित तथा संक्रामक है, स्वतुल्य भी है।
मान लीजिए A = {0, 1} और N प्राकृत संख्याओं का समुच्चय है, तो f(2n – 1) = 0, f(2n) = 1, ∀ n∈ N द्वारा परिभाषित प्रतिचित्रण f: N → A आच्छादक है।