मराठी

The age of the father is twice the sum of the ages of his two children. After 20 years, his age will be equal to the sum of the ages of his children. Find the age of the father. - Mathematics

Advertisements
Advertisements

प्रश्न

The age of the father is twice the sum of the ages of his two children. After 20 years, his age will be equal to the sum of the ages of his children. Find the age of the father.

बेरीज

उत्तर

Let the present age (in year) of father and his two children be x, y and z years, respectively.

Now by given condition,

x = 2(y + z)   ......(i)

And after 20 years,

(x + 20) = (y + 20) + (z + 20)

⇒ y + z + 40 = x + 20

⇒ y + z = x – 20

On putting the value of (y + z) in equation (i), we get the present age of father

x = 2(x – 20)

∴ x = 2x – 40

⇒ x = 40

Hence, the father’s age is 40 years.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Pair of Liner Equation in Two Variable - Exercise 3.3 [पृष्ठ २८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 3 Pair of Liner Equation in Two Variable
Exercise 3.3 | Q 17 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the following pair of linear equation by the elimination method and the substitution method.

3x – 5y – 4 = 0 and 9x = 2y + 7


If the length of a rectangle is reduced by 5 units and its breadth is increased by 3 units, then the area of the rectangle is reduced by 9 square units. If length is reduced by 3 units and breadth is increased by 2 units, then the area of rectangle will increase by 67 square units. Then find the length and breadth of the rectangle.


Solve the following simultaneous equation.

2x - y = 5 ; 3x + 2y = 11 


Solve the following simultaneous equation.

`2/x + 3/y = 13` ; `5/x - 4/y = -2`


By equating coefficients of variables, solve the following equation.

5x + 7y = 17 ; 3x - 2y = 4


A fraction becomes `1/3` when 2 is subtracted from the numerator and it becomes `1/2` when 1 is subtracted from the denominator. Find the fraction.


The sum of the two-digit number and the number obtained by interchanging the digits is 132. The digit in the ten’s place is 2 more than the digit in the unit’s place. Complete the activity to find the original number.

Activity: Let the digit in the unit’s place be y and the digit in the ten’s place be x.

∴ The number = 10x + y

∴ The number obtained by interchanging the digits = `square`

∴ The sum of the number and the number obtained by interchanging the digits = 132

∴ 10x + y + 10y + x = `square`

∴ x + y = `square`      .....(i)

By second condition,

Digit in the ten’s place = digit in the unit’s place + 2

∴ x – y = 2     ......(ii)

Solving equations (i) and (ii)

∴ x = `square`, y = `square`

Ans: The original number = `square`


Difference between two numbers is 3. The sum of three times the bigger number and two times the smaller number is 19. Then find the numbers


A 2-digit number is such that the product of its digits is 24. If 18 is subtracted from the number, the digits interchange their places. Find the number.


Read the following passage:

Two schools 'P' and 'Q' decided to award prizes to their students for two games of Hockey ₹ x per student and Cricket ₹ y per student. School 'P' decided to award a total of ₹ 9,500 for the two games to 5 and 4 Students respectively; while school 'Q' decided to award ₹ 7,370 for the two games to 4 and 3 students respectively.

Based on the above information, answer the following questions:

  1. Represent the following information algebraically (in terms of x and y).
  2. (a) What is the prize amount for hockey?
    OR
    (b) Prize amount on which game is more and by how much?
  3. What will be the total prize amount if there are 2 students each from two games?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×