मराठी

The alongside figure shows a parallelogram ABCD in which AE = EF = FC. Prove that: i. DE is parallel to FB ii. DE = FB iii. DEBF is a parallelogram. - Mathematics

Advertisements
Advertisements

प्रश्न

The alongside figure shows a parallelogram ABCD in which AE = EF = FC.

Prove that:

  1. DE is parallel to FB
  2. DE = FB
  3. DEBF is a parallelogram.

बेरीज

उत्तर

Construction: 

Join DF and EB

Join diagonal BD

Since diagonals of a parallelogram bisect each other.

∴ OA = OC and OB = OD

Also, AE = EF = FC

Now, OA = OC and AE = FC

⇒ OA - AE = OC - FC

⇒ OE = OF

Thus, in quadrilatreal DEFB, bisect each other.

OB = OD and OE = OF

⇒ Diagonals of a quadrilateral DEFB bisect each other.

⇒ DEFB is a parallelogram.

⇒ DE is parallel to FB

⇒ DE = FB                   ...(Opposite sides are equal)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Rectilinear Figures [Quadrilaterals: Parallelogram, Rectangle, Rhombus, Square and Trapezium] - Exercise 14 (C) [पृष्ठ १८१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 14 Rectilinear Figures [Quadrilaterals: Parallelogram, Rectangle, Rhombus, Square and Trapezium]
Exercise 14 (C) | Q 3 | पृष्ठ १८१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×