Advertisements
Advertisements
Question
The alongside figure shows a parallelogram ABCD in which AE = EF = FC.
Prove that:
- DE is parallel to FB
- DE = FB
- DEBF is a parallelogram.
Solution
Construction:
Join DF and EB
Join diagonal BD
Since diagonals of a parallelogram bisect each other.
∴ OA = OC and OB = OD
Also, AE = EF = FC
Now, OA = OC and AE = FC
⇒ OA - AE = OC - FC
⇒ OE = OF
Thus, in quadrilatreal DEFB, bisect each other.
OB = OD and OE = OF
⇒ Diagonals of a quadrilateral DEFB bisect each other.
⇒ DEFB is a parallelogram.
⇒ DE is parallel to FB
⇒ DE = FB ...(Opposite sides are equal)
APPEARS IN
RELATED QUESTIONS
The diagonal BD of a parallelogram ABCD bisects angles B and D. Prove that ABCD is a rhombus.
In the alongside diagram, ABCD is a parallelogram in which AP bisects angle A and BQ bisects angle B.
Prove that:
- AQ = BP
- PQ = CD
- ABPQ is a parallelogram.
The following figure shows a trapezium ABCD in which AB is parallel to DC and AD = BC.
Prove that:
(i) ∠DAB = ∠CBA
(ii) ∠ADC = ∠BCD
(iii) AC = BD
(iv) OA = OB and OC = OD.
ABCD is a parallelogram. The bisector of ∠BAD meets DC at P, and AD is half of AB.
Prove that: ∠APB is a right angle.
In the given figure, MP is the bisector of ∠P and RN is the bisector of ∠R of parallelogram PQRS. Prove that PMRN is a parallelogram.
In a parallelogram ABCD, E is the midpoint of AB and DE bisects angle D. Prove that: BC = BE.
In a parallelogram ABCD, E is the midpoint of AB and DE bisects angle D. Prove that:CE is the bisector of angle C and angle DEC is a right angle
In the given figure, the perimeter of parallelogram PQRS is 42 cm. Find the lengths of PQ and PS.
Find the perimeter of the parallelogram PQRS.
In the following figure, it is given that BDEF and FDCE are parallelograms. Can you say that BD = CD? Why or why not?