English

In a Parallelogram Abcd, E is the Midpoint of Ab and De Bisects Angle D. Prove That: Bc = Be. - Mathematics

Advertisements
Advertisements

Question

In a parallelogram ABCD, E is the midpoint of AB and DE bisects angle D. Prove that: BC = BE.

Sum

Solution


∠CDE = ∠DEA      ...(ALternate angles)
∠CDE = ∠EDA      ...(Given DE bisects ∠D)
∠DEA = ∠EDA
⇒ AD = AE             ....(i)(Sides opposite to equal angles are equal)
Now, AD = BE        ....(ii)(Opposite to equal angles are equal)
And, AE = BE          ....(iii)(E is the mid-point of AB)
⇒ BC = BE.              ....(proved)

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Quadrilaterals - Exercise 19.2

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 19 Quadrilaterals
Exercise 19.2 | Q 17.1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×