मराठी

The Angle of Depression of a Car, Standing on the Ground, from the Top of a 75 M Tower, is 30°. the Distance of the Car from the Base of the Tower (In Metres) is - Mathematics

Advertisements
Advertisements

प्रश्न

The angle of depression of a car, standing on the ground, from the top of a 75 m tower, is 30°. The distance of the car from the base of the tower (in metres) is

पर्याय

  • \[25\sqrt{3}\]

  • \[50\sqrt{3}\]

  • \[75\sqrt{3}\]

  • 150        

MCQ

उत्तर

Suppose AB is the tower and C is the position of the car from the base of the tower.
It is given that, AB = 75 m
Now,

\[\angle\]ACB =\[\angle\]CAD = 30°  

In right ∆ABC,

\[\tan30° = \frac{AB}{BC}\]
\[ \Rightarrow \frac{1}{\sqrt{3}} = \frac{75 m}{BC}\]
\[ \Rightarrow BC = 75\sqrt{3} m\] 

Thus, the distance of the car from the base of the tower is 75 \[\sqrt{3}\] 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Trigonometry - Exercise 12.3 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 12 Trigonometry
Exercise 12.3 | Q 22 | पृष्ठ ४३

संबंधित प्रश्‍न

A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower the angle of elevation of the top of the tower is 60°. From another point 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower and the width of the canal.


A man observes a car from the top of a tower, which is moving towards the tower with a uniform speed. If the angle of depression of the car changes from 30° to 45° in 12 minutes, find the time taken by the car now to reach the tower.


On the same side of a tower, two objects are located. When observed from the top of the tower, their angles of depression are 45° and 60°. If the height of the tower is 150 m, find the distance between the objects.


A vertical tower stands on a horizontal plane and is surmounted by a flagstaff of height 5 m. From a point on the ground the angles of elevation of the top and bottom of the flagstaff are 60° and 30° respectively. Find the height of the tower and the distance of the point from the tower. (take\[\sqrt{3}\]= 1.732)


The lower window of a house is at a height of 2 m above the ground and its upper window is 4 m vertically above the lower window. At certain instant the angles of elevation of a balloon from these windows are observed to be 60° and 30° respectively. Find the height of the balloon above the ground.


A statue 1.6 m tall stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60ϒ and from the same point the angle of elevation of the top of the pedestal is 40ϒ. Find the height of the pedestal. (tan 40° = 0.8391, `sqrt(3)` = 1.732)


The top of a 15 m high tower makes an angle of elevation of 60° with the bottom of an electronic pole and angle of elevation of 30° with the top of the pole. What is the height of the electric pole?


A bird is sitting on the top of a 80 m high tree. From a point on the ground, the angle of elevation of the bird is 45°. The bird flies away horizontally in such away that it remained at a constant height from the ground. After 2 seconds, the angle of elevation of the bird from the same point is 30°. Determine the speed at which the bird flies `(sqrt(3) = 1.732)`


A kite is flying at a height of 30 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.


A boy 1.7 m tall is standing on a horizontal ground, 50 m away from a building. The angle of elevation of the top of the building from his eye is 60°. Calculate the height of the building. (Take `sqrt(3)` = 1.73)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×