मराठी

A Vertical Tower Stands on a Horizontal Plane and is Surmounted by a Flagstaff of Height 5 M. - Mathematics

Advertisements
Advertisements

प्रश्न

A vertical tower stands on a horizontal plane and is surmounted by a flagstaff of height 5 m. From a point on the ground the angles of elevation of the top and bottom of the flagstaff are 60° and 30° respectively. Find the height of the tower and the distance of the point from the tower. (take\[\sqrt{3}\]= 1.732)

उत्तर

Let AB be the vertical tower and BC be the flagstaff.

Also, let O be the point on the ground from where the angles of elevation of the top and bottom of the flagstaff are 60° and 30°, respectively.

It is given that BC = 5 m.

Let the height of the vertical tower AB be h m and the distance of the point O from the tower be x m.

In ∆OAB,

\[\tan30^o = \frac{AB}{OA}\]
\[ \Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{x}\]
\[ \Rightarrow x = \sqrt{3}h . . . . . \left( 1 \right)\]

In ∆OAC,

\[\tan60^o = \frac{AC}{OA}\]
\[ \Rightarrow \sqrt{3} = \frac{h + 5}{x}\]
\[ \Rightarrow x = \frac{h + 5}{\sqrt{3}} . . . . . \left( 2 \right)\]

From (1) and (2), we get

\[\sqrt{3}h = \frac{h + 5}{\sqrt{3}}\]
\[ \Rightarrow 3h = h + 5\]
\[ \Rightarrow 2h = 5\]
\[ \Rightarrow h = \frac{5}{2} = 2 . 5\]

Thus, the height of the tower is 2.5 m.

Substituting h = 2.5 in (1), we get

\[x = \sqrt{3} \times 2 . 5 = 1 . 732 \times 2 . 5 = 4 . 33\]
Therefore, the distance of the point O from the tower is 4.33 m.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) Foreign Set 1

संबंधित प्रश्‍न

The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 45°. If the tower is 30 m high, find the height of the building.


A balloon is connected to a meteorological station by a cable of length 200 m, inclined at 60º to the horizontal. Find the height of the balloon from the ground. Assume that there is no slack in the cable


A ladder is placed along a wall of a house such that its upper end is touching the top of the wall. The foot of the ladder is 2 m away from the wall and the ladder is making an angle of 60° with the level of the ground. Determine the height of the wall.


A TV tower stands vertically on a bank of a river/canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From a point 20 m away this point on the same bank, the angle of elevation of the top of the tower is 30°. Find the height of the tower and the width of the river/canal.


From the top of a building AB, 60 m high, the angles of depression of the top and bottom of a vertical lamp post CD are observed to be 30° and 60° respectively. Find

1) the horizontal distance between AB and CD

2) the height of the lamp post.

3) the difference between the heights of the building and the lamp post.


A ladder of length 6meters makes an angle of 45° with the floor while leaning against one wall of a room. If the fort of the ladder is kept fixed on the floor and it is made to lean against the opposite wall of the room, it makes an angle of 60° with the floor. Find the
distance between two walls of the room.


Radii of the top and the base of a frustum of a cone are 5 cm and 2 cm respectively. Its height is 9 cm. Find its volume. (π = 3.14)


A bird is flying from A towards B at an angle of 35°, a point 30 km away from A. At B it changes its course of flight and heads towards C on a bearing of 48° and distance 32 km away. How far is C to the North of B?

(sin 55° = 0.8192, cos 55° = 0.5736, sin 42° = 0.6691, cos 42° = 0.7431)


There are two windows in a house. A window of the house is at a height of 1.5 m above the ground and the other window is 3 m vertically above the lower window. Ram and Shyam are sitting inside the two windows. At an instant, the angle of elevation of a balloon from these windows is observed as 45° and 30° respectively. Find the height of the balloon from the ground.


An observer 1.5 metres tall is 20.5 metres away from a tower 22 metres high. Determine the angle of elevation of the top of the tower from the eye of the observer.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×