Advertisements
Advertisements
प्रश्न
The denominator of a fraction exceeds Its numerator by 8. If the numerator is increased by 17 and the denominator is decreased by 1, we get `3/2`. Find the original fraction.
उत्तर
Let the numerator & denominator be ‘n’ & ‘d’
Given that denominator exceeds numerator by 8
∴ d = n + 8 ...(1)
If numerator increased by 17 & denominator decreased by 1,
it becomes (n + 17) & (d – 1), fraction is `3/2`
i.e `("n" + 17)/("d" - 1) = 3/2` by cross multiplying, we get
`("n" + 17)/("d" - 1) = 3/2`
2(n + 17) = 3(d – 1)
2n + 2 × 17 = 3d – 3
∴ 34 + 3 = 3d – 2n
∴ 3d – 2n = 37 ...(2)
Substituting equation (1) in (2), we get,
3 × (n + 8) – 2n = 37
3n + 3 × 8 – 2n = 37
∴ n = 37 – 24 = 13
d = n + 8 = 13 + 8 = 21
The fraction is `"n"/"d" = 13/21`
APPEARS IN
संबंधित प्रश्न
Divide the given polynomial by the given monomial.
(x3 + 2x2 + 3x) ÷ 2x
Simplify:\[\frac{32 m^2 n^3 p^2}{4mnp}\]
Divide\[- x^6 + 2 x^4 + 4 x^3 + 2 x^2\ \text{by} \sqrt{2} x^2\]
Divide 4z3 + 6z2 − z by −\[\frac{1}{2}\]
Divide x2 + 7x + 12 by x + 4.
Divide 3y4 − 3y3 − 4y2 − 4y by y2 − 2y.
Using division of polynomials, state whether
3y2 + 5 is a factor of 6y5 + 15y4 + 16y3 + 4y2 + 10y − 35
What must be added to x4 + 2x3 − 2x2 + x − 1 , so that the resulting polynomial is exactly divisible by x2 + 2x − 3?
Find whether the first polynomial is a factor of the second.
4 − z, 3z2 − 13z + 4
Divide 24(x2yz + xy2z + xyz2) by 8xyz using both the methods.