Advertisements
Advertisements
प्रश्न
The hexaquo manganese (II) ion contains five unpaired electrons, while the hexacyanoion contains only one unpaired electron. Explain using Crystal Field Theory.
उत्तर
The configuration of Mn in oxidation state +2 is 3d5. In the presence of H2O (weak field ligand) as ligand, the distribution of these five electrons is \[\ce{t^3_{2{g}} e^2_{{g}}}\] i.e. all the electrons remain unpaired. In the presence of CN– (strong field ligand) as ligand, the distribution is \[\ce{t^5_{2{g}} e^0_{{g}}}\] i.e. two t2g orbitals have paired electrons while the third t2g orbital has one unpaired electron.
APPEARS IN
संबंधित प्रश्न
Draw figure to show the splitting of d orbitals in an octahedral crystal field.
Write the electronic configuration of Fe(III) on the basis of crystal field theory when it forms an octahedral complex in the presence of (i) strong field, and (ii) weak field ligand. (Atomic no.of Fe=26)
Complete and balance the following reactions:
(1) P4 + H2SO4 → ____ + _____ + _____ + _____
(2) Ag + HNO3(dilute) → _____ + ______ + _____ + _____
An aqueous pink solution of cobalt (II) chloride changes to deep blue on addition of excess of HCl. This is because:
(i) \[\ce{[Co(H2O)6]^{2+}}\] is transformed into \[\ce{[CoCl6]}^{4-}\]
(ii) \[\ce{[Co(H2O)6]^{2+}}\] is transformed into \[\ce{[CoCl4]}^{2-}\]
(iii) tetrahedral complexes have smaller crystal field splitting than octahedral complexes.
(iv) tetrahedral complexes have larger crystal field splitting than octahedral complex.
Why are low spin tetrahedral complexes not formed?
Give the electronic configuration of the following complexes on the basis of Crystal Field Splitting theory.
\[\ce{[CoF6]^{3-}, [Fe(CN)6]^{4-} and [Cu(NH3)6]^{2+}}\].
\[\ce{CuSO4 . 5H2O}\] is blue in colour while \[\ce{CuSO4}\] is colourless. Why?
Using crystal field theory, draw energy level diagram, write electronic configuration of the central metal atom/ion and determine the magnetic moment value in the following:
\[\ce{[FeF6]^{3-}, [Fe(H2O)6]^{2+}, [Fe(CN)6]^{4-}}\]
Why are different colours observed in octahedral and tetrahedral complexes for the same metal and same ligands?
Considering crystal field theory, strong-field ligands such as CN–:
The CFSE of [CoCl6]3– is 18000 cm–1 the CFSE for [CoCl4]– will be ______.
What is crystal field splitting energy?
For octahedral Mn(II) and tetrahedral Ni(II) complexes, consider the following statements:
(i) Both the complexes can be high spin.
(ii) Ni(II) complex can very rarely below spin.
(iii) With strong field Ligands, Mn(II) complexes can be low spin.
(iv) Aqueous solution of Mn (II) ions is yellow in colour.
The correct statements are:
The complex that has highest crystal field splitting energy (Δ) is ______.
On the basis of crystal field theory, write the electronic configuration for the d5 ion with a weak ligand for which Δ0 < P.
On the basis of crystal field theory, write the electronic configuration for d4 with a strong field ligand for which Δ0 > P.
On the basis of Crystal Field Theory, write the electronic configuration of d4 ion if Δ0 > P.