मराठी

The line 4x − 3y + 12 = 0 meets x-axis at A. Write the co-ordinates of A. Determine the equation of the line through A and perpendicular to 4x – 3y + 12 = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

The line 4x − 3y + 12 = 0 meets x-axis at A. Write the co-ordinates of A. Determine the equation of the line through A and perpendicular to 4x – 3y + 12 = 0.

बेरीज

उत्तर

For the point A (the point on x-axis), the value of y = 0.

4x – 3y + 12 = 0

`=>` 4x = –12

`=>` x = –3

Co-ordinates of point A are (–3, 0)

Here, (x1, y1) = (–3, 0)

The given line is 4x – 3y + 12 = 0

3y = 4x + 12

`y = 4/3x + 4`

Slope of this line = `4/3`

∴ Slope of a line perpendicular to the given line

= `(-1)/(4/3)`

= `(-3)/4`

Required equation of the line passing through A is

y − y1 = m(x − x1)

`y - 0 = (-3)/4 (x + 3)`

4y = −3x − 9

3x + 4y + 9 = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Equation of a Line - Exercise 14 (D) [पृष्ठ २०१]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 14 Equation of a Line
Exercise 14 (D) | Q 21 | पृष्ठ २०१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×