मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएस.एस.एल.सी. (इंग्रजी माध्यम) इयत्ता ९

The mid-point of the line joining (−a, 2b) and (−3a, −4b) is - Mathematics

Advertisements
Advertisements

प्रश्न

The mid-point of the line joining (−a, 2b) and (−3a, −4b) is 

पर्याय

  • (2a, 3b)

  • (−2a, −b)

  • (2a, b)

  • (−2a, −3b)

MCQ

उत्तर

(−2a, −b)

Explanation;

Hint:

Mid−points of line = `((x_1 + x_2)/2, (y_1 + y_2)/2)`

= `((-"a" - 3"a")/2, (2"b" - 4"b")/2)`

= `((-4"a")/2, (-2"b")/2)`

= (−2a, −b)

shaalaa.com
The Mid-point of a Line Segment (Mid-point Formula)
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Coordinate Geometry - Exercise 5.6 [पृष्ठ २१९]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 9 TN Board
पाठ 5 Coordinate Geometry
Exercise 5.6 | Q 18 | पृष्ठ २१९

संबंधित प्रश्‍न

Points P(a, −4), Q(−2, b) and R(0, 2) are collinear. If Q lies between P and R, such that PR = 2QR, calculate the values of a and b.


Three consecutive vertices of a parallelogram ABCD are A(S, 5), B(-7, -5) and C(-5, 5). Find the coordinates of the fourth vertex D. 


Find the centroid of a triangle whose vertices are (3, -5), (-7, 4) and ( 10, -2).


P , Q and R are collinear points such that PQ = QR . IF the coordinates of P , Q and R are (-5 , x) , (y , 7) , (1 , -3) respectively, find the values of x and y.


AB is a diameter of a circle with centre 0. If the ooordinates of A and 0 are ( 1, 4) and (3, 6 ). Find the ooordinates of B and the length of the diameter. 


Find the mid-point of the line segment joining the points

(−2, 3) and (−6, −5)


Find the mid-point of the line segment joining the points

(8, −2) and (−8, 0)


The points A(−3, 6), B(0, 7) and C(1, 9) are the mid-points of the sides DE, EF and FD of a triangle DEF. Show that the quadrilateral ABCD is a parallelogram.


The coordinates of the point C dividing the line segment joining the points P(2, 4) and Q(5, 7) internally in the ratio 2 : 1 is


Point P is the centre of the circle and AB is a diameter. Find the coordinates of points B if coordinates of point A and P are (2, – 3) and (– 2, 0) respectively.


Given: A`square` and P`square`. Let B (x, y)

The centre of the circle is the midpoint of the diameter.

∴ Mid point formula,

`square = (square + x)/square`

⇒ `square = square` + x

⇒ x = `square - square`

⇒ x = – 6

and `square = (square + y)/2`

⇒ `square` + y = 0

⇒ y = 3

Hence coordinates of B is (– 6, 3).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×