मराठी

The sum of n terms of two A.P.'s are in the ratio 5n + 9 : 9n + 6. Then, the ratio of their 18th term is - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of n terms of two A.P.'s are in the ratio 5n + 9 : 9n + 6. Then, the ratio of their 18th term is

पर्याय

  • \[\frac{179}{321}\]

     

  • \[\frac{178}{321}\]

     

  • \[\frac{175}{321}\]

     

  • \[\frac{176}{321}\]

     

  • non above these

MCQ

उत्तर

In the given problem, the ratio of the sum of n terms of two A.P’s is given by the expression,

`S_n/S'_(n) = (5n + 9 ) /(9n + 6) `                .............(1)  

We need to find the ratio of their 18th terms.

Here we use the following formula for the sum of n terms of an A.P.,

`S_n = n/2 [2a + ( n - 1) d ] `

Where; a = first term for the given A.P.

d = common difference of the given A.P.

= number of terms

So,

`S_n = n/2 [2a + ( n - 1) d ] `

Where, a and d are the first term and the common difference of the first A.P.

Similarly,

`S'_(n) = n/2 [2a' + ( n - 1) d' ] `

Where, a’ and d are the first term and the common difference of the first A.P.

So,

`S_n /S'_(n)=( n/2 [2a + ( n - 1) d ])/(n/2 [ 2a' + ( n- 1) d'])`

         `=(  [2a + ( n - 1) d ])/( [ 2a' + ( n- 1) d'])`     .....(2) 

Equating (1) and (2), we get,

 `=(  [2a + ( n - 1) d ])/( [ 2a' + ( n- 1) d']) = (5n + 9 ) /(9n + 6) ` 

Now, to find the ratio of the nth term, we replace n by  2n - 1 . We get,

 `=(  [2a + ( 2n-1 - 1) d ])/( [ 2a' + ( 2n- 1- 1) d']) = (5(2n - 1) + 9)/(9(2n - )+6)` 

                `(  2a + (2n - 2) d )/( 2a' + ( 2n- 2) d')= (10n -5 + 9)/(18n-9+6)` 

              `(  2a + 2 (n - 1) d )/(  2a' + 2 ( n- 1) d') = (10n + 4)/(18n - 3)`  

                   `(a + ( n - 1)  d) / (a' + (n - 1) d') = ( 10n + 4)/(18n - 3)`

As we know,

an = a + ( n - 1 ) d 

Therefore, for the 18th terms, we get,

`a_18 /(a'_(18))= (10(18) + 4) / (18(18)- 3) `

            `= 184/321`

Hence  `a_18/(a'_(18)) =184/321` 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Arithmetic Progression - Exercise 5.8 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 5 Arithmetic Progression
Exercise 5.8 | Q 31 | पृष्ठ ५९

संबंधित प्रश्‍न

How many terms of the A.P. 27, 24, 21, .... should be taken so that their sum is zero?


Find the sum of the following APs.

0.6, 1.7, 2.8, …….., to 100 terms. 


Find the sum of the following arithmetic progressions:

`(x - y)/(x + y),(3x - 2y)/(x + y), (5x - 3y)/(x + y)`,  .....to n terms


The fourth term of an A.P. is 11 and the eighth term exceeds twice the fourth term by 5. Find the A.P. and the sum of first 50 terms.


Fill up the boxes and find out the number of terms in the A.P.
1,3,5,....,149 .

Here a = 1 , d =b`[    ], t_n = 149`

tn = a + (n-1) d 

∴ 149 =`[  ]     ∴149 = 2n -  [  ]`
∴ n =`[  ]`

 


The sum of the first n terms of an A.P. is 4n2 + 2n. Find the nth term of this A.P. 


If the sum of three consecutive terms of an increasing A.P. is 51 and the product of the first and third of these terms is 273, then the third term is


For an A.P., If t1 = 1 and tn = 149 then find Sn.

Activitry :- Here t1= 1, tn = 149, Sn = ?

Sn = `"n"/2 (square + square)`

= `"n"/2 xx square`

= `square` n, where n = 75


Find the sum of natural numbers between 1 to 140, which are divisible by 4.

Activity: Natural numbers between 1 to 140 divisible by 4 are, 4, 8, 12, 16,......, 136

Here d = 4, therefore this sequence is an A.P.

a = 4, d = 4, tn = 136, Sn = ?

tn = a + (n – 1)d

`square` = 4 + (n – 1) × 4

`square` = (n – 1) × 4

n = `square`

Now,

Sn = `"n"/2["a" + "t"_"n"]`

Sn = 17 × `square`

Sn = `square`

Therefore, the sum of natural numbers between 1 to 140, which are divisible by 4 is `square`.


Find the sum:

1 + (–2) + (–5) + (–8) + ... + (–236)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×