Advertisements
Advertisements
प्रश्न
The x-coordinate of a point P is twice its y-coordinate. If P is equidistant from Q(2, –5) and R(–3, 6), find the coordinates of P.
उत्तर
Let the y-coordinate of the point P be a.
Then, its x-coordinate will be 2a.
Thus, the coordinates of the point P are (2a, a).
t is given that the point P (2a, a) is equidistant from Q (2, −5) and R (−3, 6).
Thus, we have
`sqrt((2a-2)^2+(a-(-5)^2))=sqrt((2a-(-3)^2)+(a-6)^2)`
`=>sqrt((2a-2)^2+(a+5)^2)=sqrt((2a+3)^2+(a-6)^2)`
`sqrt(4a^2+4-8a+a^2+25+10a)=sqrt(4a^2+9+12a+a^2+36-12a)`
`=>sqrt(5a^2+2a+29)=sqrt(5a^2+45)`
Squaring both sides, we get
5a2+2a+29=5a2+45
⇒5a2+2a−5a2=45−29
⇒2a=16
⇒a=8
Thus, the coordinates of the point P are (16, 8), i.e. (2 × 8, 8).
APPEARS IN
संबंधित प्रश्न
Find the distance between two points
(i) P(–6, 7) and Q(–1, –5)
(ii) R(a + b, a – b) and S(a – b, –a – b)
(iii) `A(at_1^2,2at_1)" and " B(at_2^2,2at_2)`
Find the distance between P and Q if P lies on the y - axis and has an ordinate 5 while Q lies on the x - axis and has an abscissa 12 .
Prove that the following set of point is collinear :
(5 , 5),(3 , 4),(-7 , -1)
P(5 , -8) , Q (2 , -9) and R(2 , 1) are the vertices of a triangle. Find tyhe circumcentre and the circumradius of the triangle.
Prove that the points (6 , -1) , (5 , 8) and (1 , 3) are the vertices of an isosceles triangle.
Show that the points (2, 0), (–2, 0), and (0, 2) are the vertices of a triangle. Also, a state with the reason for the type of triangle.
Find the distance of the following points from origin.
(a+b, a-b)
KM is a straight line of 13 units If K has the coordinate (2, 5) and M has the coordinates (x, – 7) find the possible value of x.
Find distance between point A(– 3, 4) and origin O
What is the distance of the point (– 5, 4) from the origin?