मराठी

वक् y = 4x2 + 2x – 8 तथा, y = x3 – x + 13 एक दूसरे को बिंदु ______ पर स्पर्श करते हैं। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

वक् y = 4x2 + 2x – 8 तथा, y = x3 – x + 13 एक दूसरे को बिंदु ______ पर स्पर्श करते हैं।

रिकाम्या जागा भरा

उत्तर

वक् y = 4x2 + 2x – 8 तथा, y = x3 – x + 13 एक दूसरे को बिंदु `underline((- 1/3, (-74)/9))` पर स्पर्श करते हैं।

व्याख्या:

हमारे पास y = 4x2 + 2x – 8   .....(i)

और y = x3 – x + 13    .....(ii)

विभेदक समीकरण (i) w.r.t. x, हमारे पास है

`"dy"/'dx"` = 8x + 2

⇒ m1 = 8x + 2  .....[m वक्र का ढलान है (i)]

विभेदक समीकरण (ii) w.r.t. x, हमें मिलता है

`"dy"/"dx"` = 3x2 – 1

⇒ m2 = 3x2 – 1  ......[m2 वक्र का ढलान है (ii)]

यदि दोनों वक्र एक दूसरे को स्पर्श करते हैं, तो m1 = m2

∴ 8x + 2 = 3x2 – 1

⇒ 3x2 – 8x – 3 = 0

⇒ 3x2 – 9x + x – 3 = 0

⇒ 3x(x – 3) + 1(x – 3) = 0

⇒ (x – 3)(3x + 1) = 0

∴ x = 3, `(-1)/3`

समीकरण (i) में x = 3 रखने पर हमें प्राप्त होता है,

y = 4(3)2 + 2(3) – 8

= 36 + 6 – 8

= 34

अतः अभीष्ट बिंदु (3, 34) है, 

अब x = `- 1/3` के लिए

y = `4((-1)/3)^2 + 2((-1)/3) - 8`

= `4 xx 1/9 - 2/3 - 8`

= `4/9 - 2/3 - 8`

= `(4 - 6 - 72)/9`

= `(-74)/9`

∴ अन्य आवश्यक बिंदु `(- 1/3, (-74)/9)` है।

shaalaa.com
अवकलज के अनुप्रयोग
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: अवकलज के अनुप्रयोग - प्रश्नावली [पृष्ठ १३९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 6 अवकलज के अनुप्रयोग
प्रश्नावली | Q 60 | पृष्ठ १३९

संबंधित प्रश्‍न

सिद्ध कीजिए कि फलन f(x) = tanx – 4x  अंतराल `((-pi)/3, pi/3)` निरंतर हासमान है।


सिद्ध कीजिए कि फलन f(x) = 4x3 – 18x2 + 27x – 7 का कोई उच्चिष्ठ अथवा निम्निष्ठ नहीं है।


अवकलों के प्रयोग द्वारा `sqrt(0.082)` का सन्निकट मान ज्ञात कीजिए।


वक्र y2 = 4ax तथा x2 = 4by का प्रतिच्छेद कोण ज्ञात कीजिए।


उस महत्तम आयत का क्षेत्रफल ज्ञात कीजिए, जो दीर्घवृत्त `x^2/a^2 + y^2/b^2` = 1 के अंतर्गत स्थित है।


शीर्ष कोण `2theta` वाला एक समद्धिबाहु त्रिभुज a त्रिज्या वाले किसी वृत्त के अंतर्गत स्थित है। सिद्ध कीजिए कि त्रिभुजं का क्षेत्रफल उच्चतम है। जब `theta = pi/6`


वक्र y = sinx के बिंदु (0, 0) पर अभिलंब का समीकरण:


a के वे मान जिनके लिए y = x2 + ax + 25 x-अक्ष को स्पर्श करता है, ______ है।


यदि f (x) = `1/(4x^2 + 2x + 1)`, तो इसका उच्चतम मान ______ है।


एक पतंग 151.5 cm की ऊंचाई पर क्षैतिज दिशा में गतिमान है। यदि पतंग की चाल 10 m/s है, तो डोरी को कितनी तेजी से छोड़ा जा रहा है, जब उसकी दूरी पतंग उड़ाने वाले लड़के से 250 cm है? लड़के की ऊंचाई 1.5 m है।


कोण θ, 0 < θ < `π/2`, ज्ञात कीजिए जो अपने sine से दोगुनी तेजी से बढ़ता है।


(1.999)5 का सन्निकट मान ज्ञात कीजिए।


सिद्ध कीजिए कि f (x) = 2x + cot–1x + log `(sqrt(1+x^2) - x)`, R में वर्धमान फलन है।


सिद्ध कीजिए कि a ≥ 1 के लिए f (x) = `sqrt3` sinx - cosx - 2ax + b, R में हासमान फलन है।


सिद्ध कीजिए कि f (x) = sinx + `sqrt3` cosx का उच्चिष्ठ मान x = `pi/6` पर है।


यदि सरल रेखा x cosα + y sinα = p वक्र `x^2/"a"^2 + y^2/"b"^2` = 1 को स्पर्श करती है, तो सिद्ध कीजिए कि a2 cos2α + b2 sin2α = p2 


किसी समबाहु त्रिभुज की भुजाएँ  2 cm/sec की दर से बढ़ रही हैं। जब भुजा 10 cm है, त्रिभुज का क्षेत्रफल ______ की दर से बढ़ता है।


 बिंदु (0, 0) पर वक्र y = `x^(1/5)` की ______


रेखा x + 3y = 8  के समांतर, वक् 3x2 – y2 = 8 के अभिलंब का समीकरण है।


यदि y = x4 – 10 तथा यदि x, 2 से 1.99 तक परिवर्तित होता है, तो y का परिवर्तन क्या (कितना) है, 


वक्र y (1 + x2 ) = 2 – x के, उस बिंदु पर, जहाँ यह x-अक्ष को काटती है, स्पर्श रेखा का समीकरण ______


वक्र x = t2 + 3t – 8, y = 2t2 – 2t – 5 की, बिंदु (2, -1) पर, स्पर्श रेखा की प्रवणता ______ है।


y = x(x – 3)2, x  के नीचे दिए हुए मानों के लिए हासमान है, 


निम्नलिखित में से कौन-सा फलन 0, `pi/2` में हासमान है,


बहुपद x3 – 18x2 + 96x का, अंतराल [0, 9] में, निम्नतम मान ______


f (x) = 2 sin3x + 3 cos3x का मान x = `(5pi)/6`, पर ______


फलन f(x) = `(2x^2 - 1)/x^4`, x > 0, अंतराल में ______ हासमान है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×