मराठी

Y = x(x – 3)2, x के नीचे दिए हुए मानों के लिए हासमान है, - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

y = x(x – 3)2, x  के नीचे दिए हुए मानों के लिए हासमान है, 

पर्याय

  • 1 < x < 3

  • x < 0

  • x > 0

  • 0 < x < `3/ 2`

MCQ

उत्तर

सही उत्तर 1 < x < 3  है।

व्याख्या:

यहाँ y = x(x – 3)2

`"dy"/"dx" = x * 2(x - 3) + (x - 3)^2 * 1`

⇒ `"dy"/"dx" = 2x(x - 3) + (x - 3)^2`

 `"dy"/"dx"` = 0 को बढ़ाने और घटाने के लिए

∴ 2x(x – 3) + (x – 3)2 = 0

⇒ (x – 3)(2x + x – 3) = 0

⇒ (x – 3)(3x – 3) = 0

⇒ 3(x – 3)(x – 1) = 0

∴ x = 1, 3

∴ संभावित अंतराल हैं `(– oo, 1), (1, 3), (3, oo)`

`"dy"/"dx"` = (x – 3)(x – 1)

`(– oo, 1)` के लिए = (–) (–) = (+) बढ़ रहा है।

(1, 3) के लिए = (–) (+) = (–) घटते हुए।

`(3, oo)` के लिए = (+) (+) = (+) बढ़ रहा है।

तो फलन (1, 3) या 1 < x < 3 में घटता है।

shaalaa.com
अवकलज के अनुप्रयोग
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: अवकलज के अनुप्रयोग - प्रश्नावली [पृष्ठ १३८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 6 अवकलज के अनुप्रयोग
प्रश्नावली | Q 48 | पृष्ठ १३८

संबंधित प्रश्‍न

अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।

`(17/81)^(1/4)`


अवकलों के प्रयोग द्वारा `sqrt(0.082)` का सन्निकट मान ज्ञात कीजिए।


वक्र y = cos (x + y), –2π ≤ x ≤ 2π, की उन सभी स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जो रेखा x + 2y = 0 के समांतर हैं।


वक्र y2 = 4ax तथा x2 = 4by का प्रतिच्छेद कोण ज्ञात कीजिए।


f(x) = secx + log cos2x, 0 < x < 2π का उच्चतम तथा निम्नतम मान ज्ञात कीजिए।


उस महत्तम आयत का क्षेत्रफल ज्ञात कीजिए, जो दीर्घवृत्त `x^2/a^2 + y^2/b^2` = 1 के अंतर्गत स्थित है।


वक्र `3"y" = 6"x"  –  5"x"^3` पर स्थित उस बिंदु का भुज, जिस पर वक्र का अभिलंब मूल बिंदुसे होकर जाता है।


समीकरण x = et . cost, y = et . sint द्वारा प्रदत्त वक्र की t = `pi/4` पर स्पर्श रेखा, x-अक्ष से कोण बनाती है।


वक्र y = sinx के बिंदु (0, 0) पर अभिलंब का समीकरण:


वक्र y2 = x पर वह बिंदु जहाँ स्पर्श रेखा x-अक्ष से `pi/4` कोण बनाती है।


मान लीजिए कि c पर f का द्वितीय अवकलज है, इस प्रकार कि f ′(c) = 0 तथा f ″(c) > 0, तो c पर फलन ______ है।


नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।


वक्र `sqrt(x) + sqrt(y) = 4` उस बिंदु के निर्देशांक ज्ञात कीजिए, जिस पर स्पर्श रेखा का अक्षों से झुकाव समान है।


सिद्ध कीजिए कि रेखा `x/"a" +y/"b"` = 1 , वक्र y = b . e-x/a को उस बिंदु पर स्पर्श करती है जिस पर वक्र y-अक्ष को काटता है।


किस बिंदु पर, वक्र y = – x3 + 3x2 + 9x – 27 की प्रवणता उच्चतम है? उच्चतम प्रवणता भी ज्ञात कीजिए।


c2 क्षेत्रफल के किसी दिए हुए गत्ते से वर्गाकार आधार का एक खुला हुआ बाक्स बनाना है। सिद्ध कीजिए कि बाक्स का महत्तम आयतन `c^3/(6sqrt3)` घन इकाई है।


वक्र y = e2x की, बिंदु (0, 1) पर, स्पर्श रेखा x-अक्ष से बिंदु  ______


फलन f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 ______


फलन f(x) = tanx – x ______ 


यदि x एक वास्तविक संख्या है, तो x2 – 8x + 17 का निम्नतम मान ______


फलन f (x) = 2x3 – 3x2 – 12x + 4 के ______


sin x . cos x का उच्चतम मान है ______


f (x) = 2 sin3x + 3 cos3x का मान x = `(5pi)/6`, पर ______


वक् y = –x3 + 3x2 + 9x – 27 की उच्चतम प्रवणता ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×