मराठी

वक्र y = x + 1 तथा x = 2 और x = 3 रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

वक्र y = x + 1 तथा x = 2 और x = 3 रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है

पर्याय

  • `7/2` वर्ग इकाई 

  • `9/2` वर्ग इकाई 

  • `11/2` वर्ग इकाई 

  • `13/2` वर्ग इकाई 

MCQ

उत्तर

सही उत्तर `underline(7/2 "वर्ग इकाई")` है।

व्याख्या:

दी गई रेखाओं के समीकरण हैं = x + 1, x = 2 और x = 3

वाँछित क्षेत्रफल = `int_2^3 (x + 1) "d"x`

= `[x^2/2 + x]_2^3`

= `(9/2 + 3) - (4/2 + 2)`

= `15/2 - 4`

= `7/2` वर्ग इकाई

shaalaa.com
समाकलनों के अनुप्रयोग
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: स्माकलो के अनुप्रयोग - प्रश्नावली [पृष्ठ १७४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 8 स्माकलो के अनुप्रयोग
प्रश्नावली | Q 33 | पृष्ठ १७४

संबंधित प्रश्‍न

समाकलन विधि का उपयोग करते हुए वक्र |x| + |y| = 1से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


समाकलन विधि का उपयोग करते हुए एक ऐसे त्रिभुज ABC का क्षेत्रफल ज्ञात कीजिए जिसके शीर्षों के निर्देशांक A(2, 0), B (4, 5) एवं C (6, 3) हैं।


समाकलन विधि का उपयोग करते हुए, रेखाओं 2x + y = 4, 3x – 2y = 6 एवं x – 3y + 5 = 0 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


0 और π के बीच, वक्र y = sin x का क्षेत्रफल ज्ञात कीजिए।


वक्र ay2 = x3, y-अक्ष तथा y = a और y = 2a रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


परवलय y2 = 2x और सरल रेखा x - y = 4 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र x = 3 cost, y = 2 sint से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


उस क्षेत्र का क्षेत्रफल ज्ञात कीजिए, जो परवलय y = `(3x^2)/4` और रेखा 3x - 2y + 12 = 0 के बीच में परिबद्ध है।


दीर्घवृत्त  `x^2/"a"^2 + y^2/"b"^2` = 1 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल बराबर है


वक्र x = y2 , y-अक्ष तथा रेखा y = 3 और y = 4 से परिबद्ध क्षेत्र का क्षेत्रफल ______ है।


वक्र y2 = 9x, और y = 3x से परिबद्ध क्षेत्रफल का क्षेत्रफल ज्ञात कीजिए।


परवलय y2 = 2px, और x2 = 2py से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = 2`sqrtx`  के अंतर्गत x = 0 और x = 1 रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


समाकलन का इस्तेमाल करते हुए, रेखा 2y = 5x + 7, x-अक्ष तथा x = 2 और x = 8 रेखाओं से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y2 = 2x और x2 + y2 = 4x से परिंबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


x = 0 और x = 2π के बीच वक्र y = sinx द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


समाकलन का प्रयोग करते हुए, उस त्रिभुज द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए, जिसके शीर्ष (-1, 1), (0, 5) और (3, 2) हैं।


क्षेत्र `{(x, "y") : "y"^2 ≤ 6"a"x  "और"  x^2 + "y"^2≤ 16"a"^2}`  का एक संभावित आकृति खींचिए। साथ ही,समाकलन की विधि द्वारा इस क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


रेखा x + 2y = 2, y – x = 1 और 2x + y = 7 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


रेखाओं y = 4x + 5, y = 5 – x और 4y = x + 5 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = 2cosx तथा x-अक्ष द्वारा x = 0 से x = 2π तक परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


y-अक्ष, y = cosx, y = sinx, 0 ≤ x ≤ `pi/2` से परिबद्ध क्षेत्र का क्षेत्रफल है


वक्र y = cosx द्वारा x = 0 और x = π के बीच में परिबद्ध क्षेत्र का क्षेत्रफल है


वृत्त x2 + y2 = 1 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


वक्र x = 2y + 3 तथा y = 1 और y = –1 रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×