मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

When Stopping Potential is Applied in an Experiment on Photoelectric Effect, No Photoelectric is Observed. this Means that - Physics

Advertisements
Advertisements

प्रश्न

When stopping potential is applied in an experiment on photoelectric effect, no photoelectric is observed. This means that

पर्याय

  • the emission of photoelectrons is stopped

  • the photoelectrons are emitted but are re-absorbed

  • the photoelectrons are accumulated near the collector plate

  • the photoelectrons are dispersed from the sides of the apparatus

MCQ

उत्तर

the photoelectrons are emitted but are re-absorbed by the emitter metal

In an experiment on photoelectric effect, the photons incident at the metal plate cause photoelectrons to be emitted. The metal plate is termed as "emitter". The electrons ejected are collected at the other metal plate called "collector". When the potential of the collector is made negative with respect to the emitter (or the stopping potential is applied), the electrons emitted from the emitter are repelled by the collector. As a result, some electrons go back to the cathode and the current decreases.

shaalaa.com
Experimental Study of Photoelectric Effect
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Photoelectric Effect and Wave-Particle Duality - MCQ [पृष्ठ ३६४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 20 Photoelectric Effect and Wave-Particle Duality
MCQ | Q 8 | पृष्ठ ३६४

संबंधित प्रश्‍न

Define the term 'intensity of radiation' in terms of photon picture of light.


Use the same formula you employ in (a) to obtain electron speed for an collector potential of 10 MV. Do you see what is wrong? In what way is the formula to be modified?


Ultraviolet light of wavelength 2271 Å from a 100 W mercury source irradiates a photo-cell made of molybdenum metal. If the stopping potential is −1.3 V, estimate the work function of the metal. How would the photo-cell respond to a high intensity (∼105 W m−2) red light of wavelength 6328 Å produced by a He-Ne laser?


Draw graphs showing variation of photoelectric current with applied voltage for two incident radiations of equal frequency and different intensities. Mark the graph for the radiation of higher intensity.


What is the speed of a photon with respect to another photon if (a) the two photons are going in the same direction and (b) they are going in opposite directions?


It is found that yellow light does not eject photoelectrons from a metal. Is it advisable to try with orange light or with green light?


It is found that photosynthesis starts in certain plants when exposed to sunlight, but it does not start if the plants are exposed only to infrared light. Explain.


If an electron has a wavelength, does it also have a colour?


Let nr and nb be the number of photons emitted by a red bulb and a blue bulb, respectively, of equal power in a given time.


Light of wavelength λ falls on a metal with work-function hc/λ0. Photoelectric effect will take place only if


In which of the following situations, the heavier of the two particles has smaller de Broglie wavelength? The two particles
(a) move with the same speed
(b) move with the same linear momentum
(c) move with the same kinetic energy
(d) have fallen through the same height


Calculate the momentum of a photon of light of wavelength 500 nm.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


When the sun is directly overhead, the surface of the earth receives 1.4 × 103 W m−2 of sunlight. Assume that the light is monochromatic with average wavelength 500 nm and that no light is absorbed in between the sun and the earth's surface. The distance between the sun and the earth is 1.5 × 1011 m. (a) Calculate the number of photons falling per second on each square metre of earth's surface directly below the sun. (b) How many photons are there in each cubic metre near the earth's surface at any instant? (c) How many photons does the sun emit per second?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A small piece of cesium metal (φ = 1.9 eV) is kept at a distance of 20 cm from a large metal plate with a charge density of 1.0 × 10−9 C m−2 on the surface facing the cesium piece. A monochromatic light of wavelength 400 nm is incident on the cesium piece. Find the minimum and maximum kinetic energy of the photoelectrons reaching the large metal plate. Neglect any change in electric field due to the small piece of cesium present.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


Define the term: threshold frequency


Answer the following question.
Plot a graph of photocurrent versus anode potential for radiation of frequency ν and intensities I1 and I2 (I1 < I2).


On the basis of the graphs shown in the figure, answer the following questions :

(a) Which physical parameter is kept constant for the three curves?

(b) Which is the highest frequency among v1, v2, and v3?


The work function for a metal surface is 4.14 eV. The threshold wavelength for this metal surface is ______.


Read the following paragraph and answer the questions.

The figure shows the variation of photoelectric current measured in a photocell circuit as a function of the potential difference between the plates of the photocell when light beams A, B, C and D of different wavelengths are incident on the photocell. Examine the given figure and answer the following questions:

  1. Which light beam has the highest frequency and why?
  2. Which light beam has the longest wavelength and why?
  3. Which light beam ejects photoelectrons with maximum momentum and why?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×