मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

If the frequency of light in a photoelectric experiment is doubled, the stopping potential will ______. - Physics

Advertisements
Advertisements

प्रश्न

If the frequency of light in a photoelectric experiment is doubled, the stopping potential will ______.

पर्याय

  • be doubled

  • be halved

  • become more than double

  • become less than double

MCQ
रिकाम्या जागा भरा

उत्तर

If the frequency of light in a photoelectric experiment is doubled, the stopping potential will become more than double.

Explanation:

According to Einstein's equation of the photoelectric effect,

`eV_0 = hv - varphi`

⇒ `V_0 = (hv - varphi)/e`    ....(1)

Here, V0 = stopping potential

v = frequency of light

`varphi` = work function

Let the new frequency of light be 2ν and the corresponding stopping potential be V0'.
Therefore,

`eV_0^'  = 2hv - varphi`

`V_0^'  = (2hv - varphi)/e` ....(2)

Multiplying both sides of equation (1) by 2, we get:

`2V_0 = (2hv - 2varphi)/e` ....(3)

Now if we compare (2) and (3), it can be observed that: `(2hv - varphi)/e > (2hv - 2varphi)/e`

⇒ `V_0^' > 2V_0`

It is clear from the above equation that if the frequency of light in a photoelectric experiment is doubled, the stopping potential will be more than doubled.

shaalaa.com
Experimental Study of Photoelectric Effect
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Photoelectric Effect and Wave-Particle Duality - MCQ [पृष्ठ ३६४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 20 Photoelectric Effect and Wave-Particle Duality
MCQ | Q 9 | पृष्ठ ३६४

संबंधित प्रश्‍न

Use the same formula you employ in (a) to obtain electron speed for an collector potential of 10 MV. Do you see what is wrong? In what way is the formula to be modified?


Ultraviolet light of wavelength 2271 Å from a 100 W mercury source irradiates a photo-cell made of molybdenum metal. If the stopping potential is −1.3 V, estimate the work function of the metal. How would the photo-cell respond to a high intensity (∼105 W m−2) red light of wavelength 6328 Å produced by a He-Ne laser?


It is found that yellow light does not eject photoelectrons from a metal. Is it advisable to try with orange light or with green light?


The threshold wavelength of a metal is λ0. Light of wavelength slightly less than λ0 is incident on an insulated plate made of this metal. It is found that photoelectrons are emitted for some time and after that the emission stops. Explain.


If an electron has a wavelength, does it also have a colour?


The equation E = pc is valid


If the wavelength of light in an experiment on photoelectric effect is doubled,
(a) photoelectric emission will not take place
(b) photoelectric emission may or may not take place
(c) the stopping potential will increase
(d) the stopping potential will decrease


A parallel beam of monochromatic light of wavelength 663 nm is incident on a totally reflecting plane mirror. The angle of incidence is 60° and the number of photons striking the mirror per second is 1.0 × 1019. Calculate the force exerted by the light beam on the mirror.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A sphere of radius 1.00 cm is placed in the path of a parallel beam of light of large aperture. The intensity of the light is 0.5 W cm−2. If the sphere completely absorbs the radiation falling on it, find the force exerted by the light beam on the sphere.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A sphere of radius 1.00 cm is placed in the path of a parallel beam of light of large aperture. The intensity of the light is 0.5 W cm−2. If the sphere completely absorbs the radiation falling on it, Show that the force on the sphere due to the light falling on it is the same even if the sphere is not perfectly absorbing.


When a metal plate is exposed to a monochromatic beam of light of wavelength 400 nm, a negative potential of 1.1 V is needed to stop the photo current. Find the threshold wavelength for the metal.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


The electric field associated with a light wave is given by `E = E_0 sin [(1.57 xx 10^7  "m"^-1)(x - ct)]`. Find the stopping potential when this light is used in an experiment on photoelectric effect with the emitter having work function 1.9 eV.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


Answer the following question.
Plot a graph of photocurrent versus anode potential for radiation of frequency ν and intensities I1 and I2 (I1 < I2).


Consider a metal exposed to light of wavelength 600 nm. The maximum energy of the electron doubles when light of wavelength 400 nm is used. Find the work function in eV.


The work function for a metal surface is 4.14 eV. The threshold wavelength for this metal surface is ______.


Read the following paragraph and answer the questions.

The figure shows the variation of photoelectric current measured in a photocell circuit as a function of the potential difference between the plates of the photocell when light beams A, B, C and D of different wavelengths are incident on the photocell. Examine the given figure and answer the following questions:

  1. Which light beam has the highest frequency and why?
  2. Which light beam has the longest wavelength and why?
  3. Which light beam ejects photoelectrons with maximum momentum and why?

How would the stopping potential for a given photosensitive surface change if the frequency of the incident radiation were increased? Justify your answer.


  • Assertion (A): For the radiation of a frequency greater than the threshold frequency, the photoelectric current is proportional to the intensity of the radiation.
  • Reason (R): Greater the number of energy quanta available, the greater the number of electrons absorbing the energy quanta and the greater the number of electrons coming out of the metal.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×